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Abstract

Foundational image generation models like Stable Diffusion
at producing high-quality images based on textual prompts.
Although these models can generate strong visual content,
they lack control beyond the initial prompt. The absence of
post-editing features, including precise text alignment, layout
customization, and image replacement, limits their function-
ality, sometimes leading to incorrect outcomes. This draw-
back is relevant to a variety of industries, such as the advertis-
ing industry where manual generation of posters, banners, etc.
is expensive, laborious and time-consuming, therefore prone
to repetition. To address these concerns, we propose a novel
multi agent system that generates an initial image from text-
based prompts and specified objects, followed by iteratively
refining the initial image. The initial process of image gener-
ation involves segmenting the key objects from the provided
images, crafting an overall narrative that describes the sce-
nario in which these objects will be involved, and ultimately
generating a complete image. The refinement process is ac-
complished using LLM and VLM based agents to look for
visual cues that describe potential issues and apply changes
to address those problems. This refinement process simulates
the editing process humans apply to images while leaving the
option open to manually edit any component of the image.
Such a system enables people to rapidly generate consistent
images with multiple objects or texts added like posters, ban-
ners or flyers. In conclusion, our agentic system enhances
foundational image generation models by offering iterative
refinement and post-editing capabilities. This approach im-
proves control, making it ideal for industries like advertising,
where it simplifies and accelerates the creation of visually
consistent and customizable content.

Introduction
Text-to-image diffusion models have revolutionized auto-
mated image generation, with Stable Diffusion (Podell et al.
2023) leading to widespread adoption in creative workflows.
Despite their impressive capabilities, these models primar-
ily rely on text prompts for generation, offering limited user
control during the creation process. When modifications are
needed, artists must resort to post-processing techniques like
inpainting or specialized architectures such as ControlNet
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(Zhang, Rao, and Agrawala 2023), making it particularly
challenging to create content-centric images that require pre-
cise control over layout and branding elements.

This limitation significantly impacts the advertising in-
dustry, where visual content plays a crucial role in product
marketing across social media and streaming platforms. The
current process of creating such advertisements is resource-
intensive, requiring multiple iterations between designers
and stakeholders, often resulting in repetitive content that
diminishes user engagement and brand value. Furthermore,
existing approaches struggle with maintaining semantic con-
sistency between product features, brand messaging, and vi-
sual elements.

Figure 1: Results from current generation models show-
ing inconsistencies in text rendering, object placement, and
brand coherence.

Our system addresses these challenges through a
narrative-driven approach combining text and image-based
prompts for initial generation, followed by an agentic refine-
ment loop. This framework enables users to modify image
components throughout the refinement process using an in-
tegrated editor application, while maintaining semantic re-
lationships between visual elements. The system leverages
compositional control to ensure that generated content aligns
with brand guidelines and marketing objectives.

The key contributions of this work are:
• Multi-Agent Architecture: A novel system integrating

narrative generation and visual analysis through special-
ized agents, enabling seamless collaboration between au-
tomated processes and human designers.

• Iterative Refinement Loop: A sophisticated mechanism
combining VLMs and LLMs to progressively improve
visual content while maintaining brand consistency and
design coherence through automated critique and adjust-
ment.



• Efficient Implementation: A practical system running
on modest hardware that demonstrates real-world viabil-
ity through real-time interaction and significant reduction
in content creation time.

Related Work
Our work builds upon several key areas in AI and computer
vision, integrating them into a cohesive multi-agent system
for visual content generation and editing.

Recent advances in Large Language Models (LLMs) such
as LLaMA 2 (Touvron et al. 2023), Qwen (Bai et al. 2023),
Mistral (Jiang et al. 2023),have demonstrated remarkable ca-
pabilities in reasoning and natural language understanding.
These models, particularly when augmented with structured
outputs and function calling capabilities through frame-
works like OpenAI’s Function Calling API and Anthropic’s
Constitutional AI, serve as effective reasoning engines in
multi-agent systems.

Vision-Language Models (VLMs) have revolutionized
multimodal understanding through architectures that en-
able sophisticated visual reasoning and cross-modal align-
ment. Models like CLIP (Liu et al. 2023), PaLI-X (Beyer
et al. 2024), Idefics-2 (Laurençon et al. 2024), MANTIS
(Jiang et al. 2024) have achieved remarkable performance
in visual comprehension tasks. These models demonstrate
sophisticated capabilities in visual content analysis, cri-
tique, and aesthetic evaluation through advanced architec-
tures that combine transformer-based vision encoders with
large language models. More efficient implementations like
CogVLM (Wang et al. 2024a) and MiniGPT (Zhu et al.
2023) have made these capabilities accessible for real-time
applications.

Text-to-image generation has evolved significantly with
diffusion-based models like Stable Diffusion XL (Rombach
et al. 2022) and Flux (Labs 2024). While these models ex-
cel at high-quality image synthesis, they typically lack fine-
grained control over generation and post-editing capabil-
ities. Recent research has explored controlled generation
through attention manipulation (Li et al. 2019), Control-
Net (Zhang, Rao, and Agrawala 2023), IP-Adapter (BeFrend
2023), and T2I-Adapter (Balaji et al. 2023). Post-generation
editing capabilities have expanded through techniques like
inpainting (AI 2024), outpainting, regional prompting , and
mask-guided editing. Interactive refinement approaches like
InstructPix2Pix and custom LoRA adaptations have further
enhanced control over generated content.

In object detection and segmentation, the Segment Any-
thing Model (SAM) (Kirillov et al. 2023), YOLO-World
(Cheng et al. 2024), and Florence (Yuan et al. 2021) have
revolutionized zero-shot capabilities, enabling robust ob-
ject isolation without task-specific training. Fast SAM (Ravi
et al. 2024) and Mobile SAM(Zhang et al. 2023) have made
these capabilities more accessible for real-time applications.
These advances support sophisticated image editing and
generation workflows through reliable object extraction and
manipulation.

Multi-agent systems have emerged as a powerful
paradigm for complex AI tasks, with frameworks like Re-
Act (Yao et al. 2023), AutoGen (Wu et al. 2023), and

LangChain(Chase 2022) providing structured approaches
for agent collaboration. While these frameworks have
demonstrated impressive capabilities in text-based reason-
ing and task completion, their integration with visual un-
derstanding remains limited. Recent work like MultiModal-
Agent (Wang et al. 2024b) has begun exploring multi-agent
systems with visual capabilities, but significant challenges
remain in achieving sophisticated visual reasoning and ma-
nipulation comparable to their text-based counterparts.

Previous work in automated advertisement generation has
primarily focused on layout generation (Zhu et al. 2024)
and style transfer (Liu et al. 2023). While systems like Lay-
outDM (Chai, Zhuang, and Yan 2023) and LayoutDETR
(Yu et al. 2024) use advanced architectures for graphic lay-
outs, they typically lack iterative refinement capabilities and
struggle with maintaining brand consistency.

Our work addresses these limitations by introducing a
novel multi-agent framework that combines LLM reasoning,
VLM understanding, and modern image generation capabil-
ities, enabling iterative refinement through agent collabora-
tion while maintaining visual consistency.

System Architecture

Our system architecture is designed with scalability, effi-
ciency, and user experience as core principles. We employ
a distributed microservices architecture that separates com-
putational concerns while maintaining real-time interactive
capabilities. Figure3 provides a high-level overview of our
system architecture.

Figure 2: System Architecture



Frontend Application
The frontend is built using Next.js and Fabric.js, provid-
ing a Figma / Canva -like interface for image manipulation.
Real-time communication between frontend and backend
is achieved through RESTful APIs and Server-Sent Events
(SSE), enabling users to observe and intervene in the agent’s
decision-making process.

Backend Services
The backend is structured into three optimized components:

Control Server A lightweight Fastapi server orchestrates
the system by managing agent algorithms, user sessions, and
event broadcasting. The server coordinates all system com-
ponents while maintaining minimal resource usage.

Database Layer A serverless PostgreSQL instance stores
canvas states, user data, and refinement history in JSON for-
mat, optimizing for both cost and scalability.

Model Inference Server Running on a T4 GPU node, this
server efficiently hosts all AI models including LLMs for
content generation, VLMs for image analysis, and object
detection models. The models are optimized to share GPU
memory, enabling simultaneous operation on a single GPU.
we also tested out system with 3rd partly llm providers to
compare peformance of out system

Scalability Considerations
Our architecture is designed for horizontal scalability at ev-
ery layer:

1. Frontend Scaling: The Next.js application can be de-
ployed across multiple edge locations using CDN ser-
vices, ensuring low-latency access for users worldwide.

2. Backend Scaling: The control server can be replicated
across multiple instances using Kubernetes, with load
balancing handling request distribution. This allows for
seamless handling of increased user load.

3. Database Scaling: The serverless PostgreSQL instance
automatically scales based on demand, with read replicas
available for handling increased query loads.

4. Model Inference Scaling: Additional GPU nodes can
be added to the Kubernetes cluster as demand increases.
The system automatically distributes inference requests
across available nodes.

Data Flow
Our system’s data flow is optimized for real-time interaction
and state consistency across components. The process be-
gins when a user initiates an action in the frontend editor,
triggering the following sequence:

The frontend sends requests to the Control Server through
REST APIs, which initiates the agentic refinement process.
As the Agent Loop Orchestrator processes these requests, it
performs three parallel operations: updating the canvas state
in the database, making inference calls to the GPU server,
and broadcasting state updates through SSE to the frontend.

The canvas state, stored as serialized JSON in Post-
greSQL, contains all element attributes including position,

style, and metadata. This JSON data is rendered into visual
form by Fabric.js in the frontend, enabling efficient storage
while maintaining element editability.

Real-time visibility into the agentic decision-making pro-
cess is achieved through SSE connections, which stream
agent thoughts, decisions, and state changes to the frontend’s
state viewer component. This transparency allows users to
monitor and intervene in the refinement process while main-
taining sub-second response times for user interactions.

The system handles both synchronous operations (like
user edits) and asynchronous processes (like model infer-
ence) seamlessly, ensuring a responsive user experience
while managing computationally intensive AI operations in
the background. Error handling and state recovery are built
into each step, maintaining system reliability during network
issues or processing failures.

Methodology
Our research introduces a novel multi-agent system de-
signed to automate and enhance the visual content cre-
ation process, particularly focusing on advertising materi-
als. The system mirrors the iterative nature of human de-
sign workflows, where an initial concept is progressively re-
fined through multiple iterations. What distinguishes our ap-
proach is the combination of sophisticated AI agents work-
ing in concert with human designers, enabling both auto-
mated refinements and manual interventions at any stage of
the process.

Initial Image Generation

Figure 3: Initial Image Generation

The initial image generation process integrates multiple
components to create a cohesive visual composition. This
process begins with two key inputs: the objects to be fea-
tured (such as product images and logos) and a textual
prompt describing the desired composition. Our Content En-
gine first analyzes these inputs to generate a narrative - a de-



tailed description that serves as a creative blueprint for the
image, as illustrated in Figure 3.

This narrative guides three sequential steps:
1. Object Integration: The Vision Engine employs the

Segment Anything Model (SAM) (Kirillov et al. 2023) and
Florence (Yuan et al. 2021) to segment and extract the input
objects. These elements are then strategically positioned on
the canvas according to the narrative’s compositional guide-
lines.

2. Background Generation: Using state-of-the-art image
generation models, we create a contextually appropriate
background based on the narrative’s atmospheric and stylis-
tic requirements.

3. Element Composition: Finally, textual elements and ad-
ditional graphical components are overlaid on the composi-
tion, completing the initial image. Each element’s placement
is determined by the narrative’s specifications for visual hi-
erarchy and brand consistency.

This layered approach ensures that the initial image pro-
vides a strong foundation for subsequent refinements while
maintaining the flexibility needed for adjustments.

Refinement Loop
Algorithm1 shows the procedures called in a single itera-

tion of the refinement loop while Figure 3 shows the entire
workflow of the refinement process. A single iteration of the
refinement loop, as shown in Algorithm 1, consists of Critic,
Planning, Execution and Evaluation Agent. The Critic Agent
visualizes the initial image and generates a report on the po-
tential issues in the image. This report is passed onto the
Planning Agent which generates a list of changes to be made
to the image.

These changes are iterated over and the Execution Agent
is called to pick a tool which can apply the change. Cur-
rently, the following tools have been implemented:

1. Text Tool: Changes the font style, size, color, stroke and
drop shadow of the text

2. Image Tool: Generates a background for the image.
3. Layout Tool: Moves the object’s position relatively or ab-

solutely.

The tool picked by the Execution Agent is called to apply
the change. The updated image is then sent to the Evalu-
ation Agent to check if the change has been implemented
correctly. If it has not been implemented correctly, the tool
is again called and given the feedback from the evaluation
agent. To prevent infinite execution of this inner ‘eval and
apply’ loop, we set a ‘maxiterations’ variable which causes
the inner loop to terminate once the number of iterations ex-
ceeds the value set in this variable.

All changes applied during this process along with the ra-
tionale of each of the agents are visible in real-time to hu-
mans interacting with the editor application using Server-
Sent Events (SSE). Once all the changes generated by the
Planning Agent have been iterated over i.e. one iteration of
the refinement loop is completed, it waits for human feed-
back before proceeding to the next iteration. During this pe-
riod, the user can make edits to any component of the image

Algorithm 1: Agentic Loop
Input: Initial Image
Parameter: Narrative
Output: Refined Image

1: critic← criticAgent(narrative, image)
2: changes← planningAgent(critic, image)
3: Let i = 0
4: while i ≤ len(changes) do
5: toolPicked←ExecutionAgent.toolPicker(changes[i])
6: image←Tools.applyChange(image, changes[i],

toolPicked)
7: i← i + 1
8: end while

applyChange(image, change, toolPicked)
9: maxIterations← 3

10: if toolPicked = ’textTool’ then
11: i← 0
12: newImage← Tools.applyTextTool(image, change)
13: conclusion← evaluationAgent(image, newImage)
14: while i≤maxIterations and ’YES’ not in conclusion

do
15: newImage←Tools.reapplyTextTool(image,

change, conclusion)
16: conclusion← evaluationAgent(image, newImage)
17: i← i + 1
18: end while
19: else if toolPicked = ’imageTool’ then
20: Similar to the text tool
21: else if toolPicked = ’layoutTool’ then
22: Same as the text tool
23: else
24: Error: Invalid tool selected
25: end if
26: return image

which they feel has not been addressed adequately by the re-
finement process. The edited image can be sent for the next
iteration refinement loop if necessary or terminated by the
user.

Since multiple agents are involved in this process, we
have experimented with various approaches of the refine-
ment loop process to optimize the quality of output gener-
ated and speed of each iteration:

Approach 1 This was the first approach undertaken and
the most rudimentary approach to refining the initial image.
Here, the Critic Agent receives the initial image, analyzes
the image and generates a list of potential issues along with
suggestions on how to fix those issues. This list of sugges-
tions are iterated over. In each iteration the execution agent
picks the element that needs to be changed and the appro-
priate tool to fix the issue using function calling. The tool
picked is called to apply the change. The tool’s response is
made using structured outputs, requiring the complete can-
vas schema to be generated for each modification. This al-
lows the tool to dynamically edit any attribute of the given
element in the image, though at the cost of significant com-
putational overhead.



Figure 4: Overall Workflow: This diagram illustrates the complete design refinement process, showing how different agents
collaborate in the system. The workflow demonstrates the iterative nature of our approach, where each stage builds upon the
previous one to progressively improve the design output. The interconnected components highlight the system’s ability to
maintain coherence while allowing for both automated refinements and human interventions at key points in the process.

Approach 2 We noticed that in Approach 1, the changes
generated by the Critic Agent were local to each issue iden-
tified, disregarding the overall outlook of the image. This
leads to subsequent changes accidentally overriding pre-
vious changes applied. Hence in Approach 2, the Critic
Agent focuses on solely generating a comprehensive report
on visual flaws and semantic flaws. The Planning Agent
is responsible for devising the priority and order in which
changes should be executed based on the report created by

the Critic Agent.
Another issue encountered in Approach 1 was how the

system determines if the tool has sufficiently modified the
right attribute to apply the change correctly. For instance,
consider ’Increase the size of the title’ to be the change that
must be applied. The Text Tool observes that the font size
of the title is 64 and therefore modifies it to 128. Now, we
observe that the title is too large since the offset value cho-
sen by the Text Tool was too large. Hence in Approach 2 we



Figure 5: Refinement Loop approaches

introduce an inner ’eval and apply’ loop where the Evalu-
ation Agent compares the images before and after the tool
applies the change. If it does not feel the change applied
correctly, it provides feedback to the Tool and the Tool re-
applies the change. This process repeats until the Evalua-
tion Agent is satisfied or maximum number of iterations is
reached. Therefore, in the previous example, the Evaluation
Agent will tell the Tool if the font size is too large or small
and the Tool will modify the font size offset accordingly un-
til it reaches the perfect value. This process simulates how
humans correct minor errors in creative processes. Similar to
Approach 1, this approach still relied on structured outputs
for canvas manipulation, requiring the generation of com-
plete canvas states for each modification.

Approach 3 To improve the speed of the refinement loop,
we make changes to the Planning Agent, Execution Agent
and Tools. We move the responsibility of inferring which el-
ement of the image that must be changed from Execution
Agent to Planning Agent. Now, the Execution Agent will
only be responsible for picking the right tool to apply the
change. This removes the need for the image attributes to
be given to the Execution Agent, reducing the number of
tokens consumed and improving the speed of the Evalua-
tion Agent. A significant improvement in this approach is
the transition from structured outputs to pure function call-
ing for canvas manipulation. Instead of generating the entire
canvas schema for each modification, the Tools now lever-
age well-defined functions with specific parameters, dramat-
ically reducing the token overhead and improving latency.
This optimization allows for much faster iterations while
maintaining precise control over canvas elements.

Results and Observations
In this study, we investigated the use of a novel agen-
tic system to generate and refine visual content such as
posters based on text and visual cues. The system addresses
the limitations of foundational image generation models by
providing iterative refinement and post-editing capabilities.
We tested the model’s capability with the following in-
puts:Brand Name: Mango Masti, Product Logo, Product Im-
age: A glass of Mango Smoothie, advertising theme, layout,
audience, style, product description, etc.

Figure 6: Brand Logo

Based on the input data, the system created four distinct
narratives, each with its own approach to representing the
brand and product. One of these narratives was chosen as the
best fit to capture Mango Masti’s brand identity and product.
The image and vision engine then analyzed the given input
assets, resulting in the initial version of the advertisement
poster Figure 6.

In the initial iteration, it was observed that the title lacked
focus due to its font style, which diminished its ability to
capture attention. Furthermore, the logo overlapped with the



Figure 7: Product Image

Figure 8: Initial version of the advertisement poster

title, creating a cluttered layout. To address these issues, ad-
justments were made, resulting in a second version of the
poster. While the color of the title was improved in this it-
eration, the overlap between the logo and the title persisted,
requiring further refinement.

After multiple refinements, in the final iteration Figure 7,
the system successfully resolved both the color and layout
issues. The title’s color was adjusted to make it more visu-
ally appealing, and the logo was properly positioned, result-
ing in a well-balanced, visually coherent, and professional
advertisement. The final poster had a harmonious alignment
of text and logo, as well as increased visual contrast, result-
ing in a more engaging design.

The refinement loop makes many iterations of changes
based on the improvements required and continues until no
further adjustments are required. This iterative method guar-
antees that the design is optimized, with all changes ad-
dressed systematically.

The following key observations were made:

1. Generation Speed:The entire poster generation process,
including numerous revisions, took only a few minutes.
This is a improvement over traditional design workflows,
in which human designers generally spend days or weeks
to finalise on a result. The system’s speed enables rapid
iteration, which is especially useful in fast-paced indus-
tries like as advertising.

2. Quality of Text and Image Alignment: The refinement
loop allowed the system to maintain consistency in the
textual narrative and graphic elements throughout multi-
ple iterations. The system successfully addressed layout
errors and ensured that the visual material matched the

generated narrative.

3. Brand Consistency: Throughout the iterative refinement
process, the system maintained the brand’s integrity. The
approach preserved the brand’s visual identity by includ-
ing the logo and product image consistently between iter-
ations, ensuring that the final advertising remained solid
with the brand’s identity.

4. Narrative Coherence: One of our system’s distinct char-
acteristics was its ability to incorporate narrative coher-
ence across the poster. By creating a story that connected
the product to its target audience, it ensured that the final
image transmitted the correct message in a visually ap-
pealing manner. This is a big improvement over typical
AI image production, which frequently results in uneven
or disconnected throughout multiple iterations.

Discussion and Limitations
Our multi-agent system demonstrates significant potential in
automating and enhancing visual content creation, particu-
larly for advertising materials. The system’s ability to gen-
erate, refine, and iterate on visual content while maintaining
brand consistency represents a substantial advancement in
automated design systems. The integration of human over-
sight at each stage ensures that the final output aligns with
creative intent while significantly reducing the time and ef-
fort required in traditional design workflows.

Key Strengths
The system’s primary strength lies in its iterative refinement
approach, which mirrors human design processes. By de-
composing the creative process into discrete steps handled
by specialized agents, we achieve a level of control and
precision that surpasses traditional end-to-end generation
approaches. The real-time visualization of agent decision-
making through SSE events provides unprecedented trans-
parency into the AI’s creative process, enabling effective
human-AI collaboration.

Our architecture’s efficiency is particularly noteworthy,
with all models running on a single T4 GPU node while
maintaining interactive response times. This optimization
makes the system practically deployable in real-world sce-
narios where computational resources may be limited. The
separation of concerns between the lightweight control
server and the GPU-intensive inference server enables ef-
ficient scaling as demand increases.

Limitations
Despite these achievements, several limitations warrant dis-
cussion:

Aesthetic Consistency: While the system can maintain
brand guidelines, it occasionally struggles with subtle aes-
thetic choices that human designers handle intuitively. The
evaluation agent sometimes fails to capture nuanced design
principles that go beyond basic visual hierarchy rules.

Creative Boundaries: The system’s reliance on pre-
defined tools and modification patterns can limit its creative



Figure 9: Iterative Refinement of Advertisement Poster Design

flexibility. Currently, it cannot invent entirely new design ap-
proaches or break established rules in artistically meaningful
ways, as human designers often do.

Performance Overhead: The iterative nature of our re-
finement process, while effective, introduces latency as each
change requires multiple agent interactions and evaluations.
This can result in longer processing times compared to
single-pass generation approaches.

Tool Limitations: The current implementation supports
only three primary tools (text, image, and layout). This con-
strains the system’s ability to perform more specialized de-
sign modifications that might require additional tools or
more complex combinations of existing ones.

Conclusion and Future Work
This paper presents a novel multi-agent approach to vi-
sual content generation that bridges the gap between auto-
mated systems and human design workflows. Our architec-
ture demonstrates that by breaking down the creative pro-
cess into specialized agent roles and enabling iterative re-
finement, we can achieve higher quality and more control-
lable results than traditional end-to-end approaches.

The system’s ability to maintain real-time interaction
while performing complex AI operations on modest hard-
ware shows that sophisticated AI-driven design tools can be
practically deployed in production environments. The inte-
gration of human oversight at key decision points ensures
that the system augments rather than replaces human cre-
ativity.

Future work will focus on several promising directions:

1. Enhanced Tool Framework: Developing a more exten-

sible tool system that allows for dynamic addition of new
modification capabilities without requiring architectural
changes.

2. Advanced Aesthetic Learning: Incorporating more so-
phisticated aesthetic evaluation metrics through fine-
tuned vision-language models trained on design princi-
ples and human feedback.

3. Optimization Techniques: Investigating methods to re-
duce the latency of the refinement loop, potentially
through parallel processing of compatible changes or
more efficient agent communication patterns.

4. Creative Exploration: Extending the system to support
more experimental and innovative design approaches,
possibly through controlled violation of standard design
rules or the introduction of style-transfer capabilities.

5. Multi-Modal Generation: Expanding the system to
handle additional content types such as videos, anima-
tions, and interactive elements, enabling more compre-
hensive marketing material generation.

Through these improvements, we aim to further narrow
the gap between AI-generated and human-created content
while maintaining the efficiency and scalability advantages
of automated systems. Our work demonstrates the potential
of multi-agent architectures in creative domains and pro-
vides a foundation for future research in AI-assisted design
tools.
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APPENDIX

Implementation Details
Model Specifications
Our system architecture integrates multiple cutting-edge ar-
tificial intelligence models, each carefully selected and opti-
mized for specific tasks within the design workflow. The im-
plementation leverages the following state-of-the-art mod-
els:

• Language Models: We utilize LLaMA 2 70B as our
primary language model, chosen for its exceptional per-
formance in content generation and planning tasks. This
model demonstrates superior capabilities in understand-
ing design context, generating appropriate content sug-
gestions, and planning design modifications. Its architec-
ture allows for efficient processing of complex design
briefs while maintaining contextual awareness through-
out the design process.

• Vision-Language Models: The system incorporates Pix-
tral , GPT-4o-mini , etc for sophisticated visual analy-
sis and evaluation tasks. These models excels in under-
standing visual elements and their relationships, provid-
ing detailed feedback on design compositions, and eval-
uating aesthetic qualities. Its multimodal capabilities en-
able seamless integration of visual and textual informa-
tion in the design workflow.

• Image Generation: Stable Diffusion XL serves as our
core image generation model, selected for its outstand-
ing ability to create high-quality, contextually appropri-
ate visual elements. The model demonstrates exceptional
performance in generating backgrounds, textures, and vi-
sual assets that align with specific design requirements.

• Object Detection: We implement a dual-model ap-
proach using SAM (Segment Anything Model) and Flo-
rence for precise object segmentation and detection. This
combination provides robust capabilities in identifying
and manipulating individual design elements while main-
taining spatial relationships and visual hierarchy.

Hardware Requirements
Our system has been engineered to deliver optimal perfor-
mance while maintaining resource efficiency. The infras-
tructure requirements have been carefully balanced to ensure
accessibility without compromising functionality:

• GPU Server Configuration: The system operates ef-
fectively on a single NVIDIA T4 GPU with 16GB
VRAM. This configuration provides sufficient computa-
tional power for real-time model inference while main-
taining cost-effectiveness. The T4’s architecture is partic-
ularly well-suited for running multiple AI models simul-
taneously, enabling smooth interaction between different
system components.

• Control Server Specifications: The control layer runs
on a modest yet efficient setup of 4 vCPUs with 16GB
RAM. This configuration has been optimized to handle
concurrent user sessions, manage model coordination,
and process design operations with minimal latency. The
server architecture includes load balancing capabilities to
ensure consistent performance during peak usage.

• Database Infrastructure: We employ a serverless Post-
greSQL instance through Neon, chosen for its combi-
nation of scalability and minimal maintenance require-
ments. This configuration provides robust data persis-
tence while automatically handling scaling and backup
operations. The serverless architecture ensures optimal
resource utilization and cost efficiency.

• Storage Solution: AWS S3 serves as our primary stor-
age solution for image assets, selected for its high avail-
ability, durability, and seamless integration capabilities.
The system implements intelligent caching mechanisms
to optimize asset delivery and reduce latency in accessing
frequently used design elements.

Interactive Editor Interface
Primary Dashboard Interface
The primary dashboard functions as the central command
center for all design operations, offering an intuitive and
comprehensive overview of the available tools and re-
sources. The interface is strategically organized to minimize
cognitive load while maximizing productivity, featuring
distinct zones for different functionalities. The workspace
presents a clean, organized layout that allows designers to
focus on their creative process while maintaining easy ac-
cess to essential tools and features.

Content Engine Interface
The content engine interface represents a sophisticated ap-
proach to AI-assisted content generation and management,
serving as a bridge between human creativity and artificial
intelligence. This interface seamlessly integrates with the
main dashboard while providing specialized tools for con-
tent creation and refinement. The system incorporates ad-
vanced parameter controls that allow for fine-tuned content
generation while maintaining brand consistency and design
principles.

AI Edit Mode Interface
The AI Edit Mode interface introduces a revolutionary ap-
proach to design refinement by establishing a clear dis-
tinction between human-driven and AI-assisted editing ses-
sions. Through a dedicated toggle system, users can explic-
itly switch between human editing and AI-assisted editing



Figure 10: Main Dashboard View 1: The primary interface showcases an integrated workspace environment with well-organized
tool panels, layer management systems, and intuitive navigation controls. The layout emphasizes efficiency in workflow man-
agement while maintaining quick access to frequently used tools

Figure 11: Main Dashboard View 2: Advanced features include sophisticated layer controls, smart grouping tools, and auto-
mated alignment systems. The interface demonstrates how complex operations are simplified through intelligent workspace
organization



Figure 12: Content Engine Dashboard: The input interface presents sophisticated content generation controls and parameters,
allowing users to specify detailed requirements for automated content creation. The system includes brand guideline integration
and style preference settings

modes, ensuring transparency in the design process. When
AI Edit Mode is activated, the system provides real-time
visualization of AI-driven improvements and modifications
while maintaining a complete history of changes for review
and potential rollback.

Refinement Loop Visualization

The refinement loop interface provides detailed insights into
the iterative improvement process, offering a transparent
view of the collaboration between various AI agents and hu-
man input. This visualization system tracks and displays the
progression of design changes, showing how different el-
ements evolve through successive iterations. The interface
includes detailed metrics and progress indicators that help
users understand the impact of each refinement cycle.

System Integration and Workflow

Component Interaction

The system implements a sophisticated interaction model
between various components, ensuring smooth data flow
and real-time updates across all interfaces. Each component
maintains state awareness while operating independently, al-
lowing for robust error handling and graceful degradation
when necessary.

Performance Optimization

The interface components are optimized for performance
through:

• Intelligent component loading with dynamic resource al-
location

• Efficient state management using advanced caching
mechanisms

• Optimized render cycles for complex visualizations

• Streamlined data flow between interface components

Future Developments
The interface system is designed for continuous evolution,
with planned enhancements including:

• Advanced collaborative features for team-based design
workflows

• Enhanced visualization tools for agent decision-making
processes

• Expanded analytics capabilities for design performance
metrics

• Integration of emerging AI technologies for improved
design assistance



Figure 13: Content Engine Output View: The results interface displays generated content alongside comprehensive analytics and
refinement options. Users can evaluate generated content through various metrics and access tools for immediate modifications

Figure 14: AI Edit Mode Interface: The comprehensive view shows the intelligent design modification system in action, featur-
ing clear indicators of AI engagement, intervention points, and automated suggestion implementations. The interface maintains
transparency by explicitly highlighting AI-driven changes versus human modifications



Figure 15: Refinement Loop Interface: A comprehensive vi-
sual representation of the iterative design improvement pro-
cess, showcasing the interplay between AI agents and hu-
man decisions. The interface tracks modification history, de-
cision points, and improvement metrics across multiple re-
finement cycles

Tool Documentation
Text Manipulation Tools
Text manipulation tools provide precise control over typo-
graphic elements and text styling within the design environ-
ment. Each tool is specifically engineered to handle distinct
aspects of text modification while maintaining visual coher-
ence.

Text Size Tool Function: changeTextSize
Input Parameters:
• textObject: The target text element
• size: Integer value for font size

Description: This tool provides precise control over text
dimensions, allowing for dynamic size adjustments while
maintaining proportional relationships within the design.
It automatically handles size scaling while preserving text
clarity and legibility across different display contexts.

Figure 16: Text size adjustment demonstration

Color Modification Tool Function: changeColor
Input Parameters:
• textObject: The target text element
• color: String representation of color value

Description: The Color Modification Tool enables seam-
less color adjustments for text elements. It supports various
color formats including hex codes and named colors, ensur-
ing consistent color application across the design system.

Figure 17: Color modification showcasing different text
color applications

Shadow Effect Tool Function: addShadow
Input Parameters:
• textObject: The target text element
• color: Shadow color value
• blur: Integer value for shadow blur
• offsetX: Horizontal offset
• offsetY: Vertical offset

Description: This tool applies customizable shadow effects
to text elements, enhancing depth and visual hierarchy. It in-
cludes intelligent contrast checking to ensure shadow effects
enhance rather than diminish text visibility.

Figure 18: Shadow effect application showing depth and di-
mensionality

Stroke Effect Tool Function: addStroke
Input Parameters:
• textObject: The target text element
• color: Stroke color value
• width: Stroke width in pixels

Description: The Stroke Effect Tool adds outline effects to
text elements, allowing for enhanced visibility and visual
impact. It maintains text legibility while providing flexible
stroke customization options.



Figure 19: Stroke effect demonstration on text elements

Text Alignment Tool Function: changeAlignment
Input Parameters:
• textObject: The target text element
• alignment: String (’left’, ’center’, ’right’)

Description: This tool manages text alignment with preci-
sion, supporting various alignment options while maintain-
ing consistent spacing and layout integrity across different
text blocks.

Figure 20: Text alignment options demonstration

Text Content Tool Function: changeTextContent
Input Parameters:
• textObject: The target text element
• text: New text content string

Description: The Text Content Tool enables dynamic text
content updates while preserving all styling and formatting
attributes. It handles text replacement operations with auto-
matic adjustment of container dimensions.

Font Style Tool Function: changeTextStyle
Input Parameters:
• textObject: The target text element
• style: Font family name
• fontWeight: Integer weight value

Description: This comprehensive typography tool manages
font family and weight adjustments, ensuring consistent ren-
dering across different platforms while maintaining design
integrity.

Figure 21: Text content modification example

Figure 22: Font style modifications showing different typo-
graphic treatments

Text Decoration Tool Function: applyLine
Input Parameters:
• textObject: The target text element
• underline: Boolean for underline effect
• overline: Boolean for overline effect
• linethrough: Boolean for strikethrough effect

Description: The Text Decoration Tool applies various line
decorations to text elements, supporting multiple decoration
types simultaneously while maintaining visual harmony.

Figure 23: Text decoration effects demonstration

Layout Manipulation Tools
Layout tools provide precise control over element position-
ing and arrangement within the design canvas. These tools
ensure consistent spacing and alignment across different de-
sign elements.



Vertical Movement Tool (Down) Function: move down
Input Parameters:
• object: The target element
• offset: Integer value for vertical movement

Description: This tool enables precise downward move-
ment of design elements, maintaining relative positioning
with surrounding elements while ensuring smooth transi-
tions.

Figure 24: Downward movement demonstration

Vertical Movement Tool (Up) Function: move up
Input Parameters:
• object: The target element
• offset: Integer value for vertical movement

Description: The upward movement tool provides con-
trolled vertical positioning, supporting precise element
placement while maintaining design hierarchy.

Figure 25: Upward movement demonstration

Horizontal Movement Tool (Right) Function:
move right
Input Parameters:
• object: The target element
• offset: Integer value for horizontal movement

Description: This tool manages rightward movement of ele-
ments with precision, maintaining proper spacing and align-
ment with adjacent elements.

Figure 26: Rightward movement demonstration

Horizontal Movement Tool (Left) Function: move left
Input Parameters:
• object: The target element
• offset: Integer value for horizontal movement

Description: The leftward movement tool enables precise
horizontal positioning, supporting fluid element arrange-
ment while maintaining design balance.

Figure 27: Leftward movement demonstration

Top Position Tool Function: position top
Input Parameters:
• object: The target element

Description: This tool automatically positions elements at
the top of the canvas while maintaining proper alignment
and spacing with other elements.

Bottom Position Tool Function: position down
Input Parameters:
• object: The target element

Description: The bottom positioning tool places elements at
the bottom of the canvas while ensuring proper spacing and
alignment with existing elements.

Left Position Tool Function: position left
Input Parameters:
• object: The target element

Description: This tool manages left-edge positioning of el-
ements, handling both text and image elements with appro-
priate origin point adjustments.



Figure 28: Top positioning demonstration

Figure 29: Bottom positioning demonstration

Figure 30: Left positioning demonstration

Right Position Tool Function: position right
Input Parameters:
• object: The target element

Description: The right positioning tool handles element
placement at the canvas’s right edge, automatically adjust-
ing origin points based on element type.

Horizontal Center Tool Function: position x to center
Input Parameters:
• object: The target element

Description: This tool provides precise horizontal center-
ing of elements, handling both text and image elements with
appropriate origin point and alignment adjustments.

Figure 31: Right positioning demonstration

Figure 32: Horizontal centering demonstration

Vertical Center Tool Function: position y to center
Input Parameters:
• object: The target element

Description: The vertical centering tool ensures precise
middle alignment of elements along the vertical axis while
maintaining proper spacing relationships.

Figure 33: Vertical centering demonstration

Image Manipulation Tools
These tools provide specialized functionality for handling
image assets within the design environment.

Image Clipping Tool Function: clip asset
Input Parameters:
• image: The target image element
• clipPath: Path coordinates for clipping



Description: This tool enables precise image cropping and
masking operations, supporting various clipping paths while
maintaining image quality and performance.

Figure 34: Image clipping demonstration

Image Movement Tool Function: move asset
Input Parameters:
• image: The target image element
• position: New coordinates for image placement

Description: The image movement tool provides precise
control over image positioning while maintaining aspect ra-
tios and relative scaling.

Figure 35: Image movement demonstration

Background Modification Tool Function:
change background
Input Parameters:
• image: The target image element
• background: New background properties

Description: This tool manages background modifications
for image elements, supporting various background types
and ensuring proper rendering across different contexts.
Suggestion: Change the background to a beach scene.

Extended Results
Refinement Loop Examples
Case Study 1: Potato Chip Design This case study
demonstrates our system’s ability to handle complex text-
heavy designs while maintaining visual hierarchy and brand
consistency. Figure 37 shows the initial generated design,
which underwent several refinement iterations to improve
readability, spacing, and visual appeal.

Initial Input:

Figure 36: Image movement demonstration

• Brand: Crispo
• Style: Modern, minimalist

Refinement Process:
Stage 1: Initial Image Generation As shown in Figure

37, the system generated an initial design incorporating the
brand elements and key messaging.

Figure 37: Initial generated design for Crispo chips packag-
ing, showing base layout and typography

Stage 2: Typography Refinement
Critic Agent:



1. Can we improve the title ’Your Healthy Crunch’ font
style to match the theme of the poster better? Yes, the current
sans-serif font appears too basic for a snack product. A more
modern, rounded font would better match the wave elements
and friendly nature of the product. Consider using fonts like
”Quicksand” or ”Comfortaa” that have softer edges while
maintaining readability.

2. Is the title ’Your Healthy Crunch’ size too large or too
small? The title size is appropriate as it creates a clear hier-
archy, but it could be reduced by about 10-15

3. Would adding some extra effects like a stroke or drop
shadow to the title ’Your Healthy Crunch’ improve the im-
age? Yes, adding a subtle drop shadow would help separate
the text from the light green background and potato chip el-
ements. A very light shadow with 20-30

4. Can we improve the color of the title ’Your Healthy
Crunch’ to stand out with the theme? The black color could
be replaced with the same teal green used in the Crispo logo
to create better brand consistency and a more cohesive color
scheme while maintaining readability against the light back-
ground.

5. Should the title’s position be changed to improve the
poster? The current position works well but could be moved
slightly higher to create more breathing room between the
title and the product package, allowing for better visual flow.

6. Can we improve the tagline ’The Snack You’ll Love to
Munch!’ font style to match the theme of the poster better?
Yes, the current casual script font looks somewhat amateur.
A playful sans-serif font with rounded edges would main-
tain the friendly feel while looking more professional and
matching the brand’s modern aesthetic.

7. Is the tagline ’The Snack You’ll Love to Munch!’ size
too large or too small? The tagline size is too small relative
to the overall composition. Increasing it by approximately
25

8. Would adding some extra effects like a stroke or drop
shadow to the tagline ’The Snack You’ll Love to Munch!’
improve the image? Similar to the title, a subtle drop shadow
would help the tagline stand out from the background and
chip elements, improving readability while maintaining the
clean design.

9. Can we improve the color of the tagline ’The Snack
You’ll Love to Munch!’ to stand out with the theme? Yes,
changing the black to either the teal green from the logo or a
slightly darker shade of it would create better harmony while
ensuring readability.

10. Should the tagline’s position be changed to improve
the poster? The tagline could be moved slightly higher from
the bottom edge to create more margin space. Additionally,
centering it horizontally would create better alignment with
the centered product package and title above.

Planning Agent
”changes”: [

”index”: 2, ”change”: ”Change font family to ’Quick-
sand’ for a more modern and rounded appearance that
matches the theme” ,

”index”: 2, ”change”: ”Reduce font size from 100 to

85 to better balance with the product package” ,

”index”: 2, ”change”: ”Add drop shadow effect with
25,

”index”: 2, ”change”: ”Change fill color from black to
teal green (matching Crispo logo) for brand consistency” ,

”index”: 2, ”change”: ”Move position slightly higher
to create more space between title and product package” ,

”index”: 3, ”change”: ”Change font family from ’Comic
Sans MS’ to a playful rounded sans-serif font” ,

”index”: 3, ”change”: ”Increase font size from 55 to
69 for better readability and balance” ,

”index”: 3, ”change”: ”Add subtle drop shadow effect
with 25,

”index”: 3, ”change”: ”Change fill color from black to
teal green (matching brand color) for harmony” ,

”index”: 3, ”change”: ”Adjust position: move slightly
higher from bottom edge and center horizontally” ]

Change 1
Text Tool:

User Prompt: You are given a change to be made to a
textbox and the properties of the textbox by the user.
You have access to the given tools/functions. Properties of
text:”type”: ”textbox”, ”version”: ”5.3.0”, ”originX”: ”cen-
ter”, ”originY”: ”top”, ”left”: 450, ”top”: 100, ”width”:
900, ”height”: 244.08, ”fill”: ”rgba(0,0,0,1)”, ”stroke”:
null, ”strokeWidth”: 1, ”strokeDashArray”: null, ”stroke-
LineCap”: ”butt”, ”strokeDashOffset”: 0, ”strokeLineJoin”:
”miter”, ”strokeUniform”: false, ”strokeMiterLimit”: 4,
”scaleX”: 1, ”scaleY”: 1, ”angle”: 0, ”flipX”: false, ”flipY”:
false, ”opacity”: 1, ”shadow”: null, ”visible”: true, ”back-
groundColor”: ””, ”fillRule”: ”nonzero”, ”paintFirst”: ”fill”,
”globalCompositeOperation”: ”source-over”, ”skewX”: 0,
”skewY”: 0, ”fontFamily”: ”Helvetica”, ”fontWeight”: 700,
”fontSize”: 75, ”text”: ”Your Healthy Crunch”, ”under-
line”: false, ”overline”: false, ”linethrough”: false, ”textAl-
ign”: ”center”, ”fontStyle”: ”normal”, ”lineHeight”: 1.16,
”textBackgroundColor”: ””, ”charSpacing”: 0, ”styles”:
[], ”direction”: ”ltr”, ”path”: null, ”pathStartOffset”: 0,
”pathSide”: ”left”, ”pathAlign”: ”baseline”, ”minWidth”:
20, ”splitByGrapheme”: false, ”selectable”: true, ”hasCon-
trols”: true, ”editable”: true Change to be made: Add drop
shadow effect with 25% opacity to create depth

Assistant: I’ll help add a drop shadow to create depth. For
25% opacity, we’ll use rgba color with 0.25 alpha value. The
shadow should be subtle but noticeable, so I’ll use moderate
offset and blur values. addShadow( ”color”: ”rgba(0, 0, 0,
0.25)”, ”offsetX”: 3, ”offsetY”: 3, ”blur”: 5 )

Evaluation Agent:
User: You are a user interface evaluator. You are given

an old image of a poster and a new image of poster after a
change has been made by calling a function. You must eval-



Figure 38: Change 1: Adding a drop shadow

uate whether the change has been put into effect correctly
and if the change improves the image. If it has been put into
effect correctly and improves the image, output ’YES’. Oth-
erwise, Provide feedback on how to make the change more
effective . Change that should be made: Add drop shadow
effect with 25 % opacity to create depth. Function called to
make the change: ”function”: ”addShadow”, ”arguments”:
”color”: ”rgba(0, 0, 0, 0.25)”, ”offsetX”: 3, ”offsetY”: 3,
”blur”: 5

Assistant: YES. The drop shadow effect has been cor-
rectly applied to the chips package in the second image,
creating a subtle but effective depth that makes the pack-
age appear to float above the green background. The shadow
parameters (25 % opacity, 3px offset, and 5px blur) create
a natural-looking shadow that enhances the overall design
without being too dramatic or distracting. This change suc-
cessfully improves the visual hierarchy and makes the prod-
uct stand out more prominently against the scattered chip
elements in the background. Change 2

Case Study 2: University Advertisement This case study
showcases the system’s ability to handle image-centric de-
signs with strong brand messaging.

Initial Input:

• Product: ABC University

• Target Audience: Prospective students
• Key Message: ”Focus on Your Future”

Refinement Process:
Stage 1: Initial Image Generation

In this step, a background is blended into the university
building, and text components are added to create a prelimi-
nary poster.

Stage 2: Typography and Layout Refinement The
Critic Agent identified issues with text hierarchy and read-
ability.

Critic Agent:
1. Can we improve the title font style to match the theme

of the poster better? The current bold sans-serif font feels
heavy and lacks sophistication. A more modern, sleek font
like Futura or Helvetica Neue would better reflect the con-
temporary architecture and forward-thinking message. Con-
sider using a lighter weight font that maintains readability
while appearing more elegant.

2. Is the title size too large or too small? The title size is
appropriate for grabbing attention, but could be reduced by
about 15-20

3. Would adding extra effects like stroke or drop shadow
to the title improve the image? The current drop shadow is



Figure 39: All iterations

too heavy and dated-looking. Instead of removing effects
completely, use a subtle, soft shadow (30-40

4. Can we improve the color of the title to stand out with
the theme? The black color appears too stark against the
bright sky. Consider using a deep navy blue or charcoal
gray (like 2C3E50) to maintain contrast while better com-
plementing the architectural elements and sky tones in the
image.

5. Should the title’s position be changed to improve the
poster? The title could be moved slightly higher to create
more space between it and the building, allowing the archi-
tecture to breathe. This would also create better visual hier-
archy with the tagline below.

6. Can we improve the tagline font style to match the
theme better? Yes, the tagline should use a complemen-
tary font to the header, perhaps the same font family but in
a lighter weight. This would create better visual harmony
while maintaining hierarchy.

7. Is the tagline size too large or too small? The tagline
size is too large relative to the main title. Reducing it by
about 25

8. Would adding extra effects to the tagline improve the
image? The tagline has the same heavy shadow effect as the
title. It should match whatever subtle effect is applied to the
title, but at an even lighter opacity (around 25

9. Can we improve the color of the tagline to stand out
with the theme? The tagline should be in the same color
family as the title but slightly lighter to create depth. If the
title uses deep navy, the tagline could use a slightly lighter
blue-gray tone.

10. Should the tagline’s position be changed to improve
the poster? The tagline could be moved slightly higher from
the bottom edge to prevent it from feeling cramped. Addi-
tionally, consider breaking it into two lines with better line
spacing to improve readability and overall composition.

Planning Agent
”changes”: [

”index”: 2, ”change”: ”Update title font family to ’Fu-
tura’ and reduce font size to 60px” ,

”index”: 2, ”change”: ”Change title color to 2C3E50
(deep navy blue)” ,

”index”: 2, ”change”: ”Modify title shadow to color:
’rgba(0,0,0,0.35)’, blur: 3, offsetX: 1, offsetY: 1” ,

”index”: 2, ”change”: ”Move title position 50 pixels
higher on the canvas” ,

”index”: 3, ”change”: ”Update tagline font family to
’Futura Light’ and reduce font size to 41px” ,

”index”: 3, ”change”: ”Change tagline color to 405D78
(lighter blue-gray)” ,

”index”: 3, ”change”: ”Modify tagline shadow to color:
’rgba(0,0,0,0.25)’, blur: 3, offsetX: 1, offsetY: 1” ,

”index”: 3, ”change”: ”Move tagline position 40 pix-



Figure 40: Initial image of university poster

els up from bottom edge and split into two lines with line
height of 1.3” ] )

Change 1

Figure 41: Change 1: Adding a drop shadow

Text Tool User: You are given a change to be made to
a textbox and the properties of the textbox by the user.
You have access to the given tools/functions. Properties
of text:”type”: ”textbox”, ”version”: ”5.3.0”, ”originX”:
”center”, ”originY”: ”center”, ”left”: 450, ”top”: 300.68,

”width”: 900, ”height”: 180.62, ”fill”: ”rgba(0,0,0,1)”,
”stroke”: null, ”strokeWidth”: 1, ”strokeDashArray”: null,
”strokeLineCap”: ”butt”, ”strokeDashOffset”: 0, ”stroke-
LineJoin”: ”miter”, ”strokeUniform”: false, ”strokeMiter-
Limit”: 4, ”scaleX”: 1, ”scaleY”: 1, ”angle”: 0, ”flipX”:
false, ”flipY”: false, ”opacity”: 1, ”shadow”: ”color”:
”rgba(0,0,0,0.5)”, ”blur”: 5, ”offsetX”: 2, ”offsetY”: 2,
”affectStroke”: false, ”nonScaling”: false, ”visible”: true,
”backgroundColor”: ””, ”fillRule”: ”nonzero”, ”paint-
First”: ”fill”, ”globalCompositeOperation”: ”source-over”,
”skewX”: 0, ”skewY”: 0, ”fontFamily”: ”Helvetica”,
”fontWeight”: 700, ”fontSize”: 60, ”text”: ”ABC Univer-
sity: Your Future, Unbound”, ”underline”: false, ”over-
line”: false, ”linethrough”: false, ”textAlign”: ”center”,
”fontStyle”: ”normal”, ”lineHeight”: 1.16, ”textBack-
groundColor”: ””, ”charSpacing”: 0, ”styles”: [], ”direc-
tion”: ”ltr”, ”path”: null, ”pathStartOffset”: 0, ”pathSide”:
”left”, ”pathAlign”: ”baseline”, ”minWidth”: 20, ”splitBy-
Grapheme”: false, ”selectable”: true, ”hasControls”: true,
”editable”: true Change to be made: Change title color to
2C3E50 (deep navy blue)

Assistant: I’ll help change the text color to the specified
hex color 2C3E50 (deep navy blue). I’ll need to convert the
hex color to rgba format as required by the changeColor
function.

The hex color 2C3E50 converts to rgba(44, 62, 80, 1).
changeColor( ”color”: ”rgba(44, 62, 80, 1)” )

Evaluation Agent:
User prompt: You are a user interface evaluator. You are

given an old image of a poster and a new image of poster
after a change has been made by calling a function. You
must evaluate whether the change has been put into ef-
fect correctly and if the change improves the image. If it
has been put into effect correctly and improves the im-
age, output ’YES’. Otherwise, Provide feedback on how to
make the change more effective. In case the executor has
any issue with applying the change, it will provide feed-
back and it is your job to resolve any potential conflicts.
Change that should be made: Change title color to 2C3E50
(deep navy blue). Function called to make the change/Feed-
back from Tool: ”function”: ”changeColor”, ”arguments”:
”color”: ”rgba(44, 62, 80, 1)”

Assistant: YES - The color change function has been
called correctly with the right RGB values for 2C3E50 but I
don’t see the title color actually changing to deep navy blue
clearly in the second image



Figure 42: All iterations


