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Abstract
Large Language Model (LLM)-based multi-agent systems
are gaining prominence for their capabilities in reasoning,
planning, and generating human-like responses. While much
of the focus in multi-agent systems has been on aspects
like partial observability, heterogeneous task allocation, and
other collaborative paradigms, ensuring reliability and ro-
bustness remains a critical challenge, particularly in high-
stakes applications. This work frames multi-agent decision-
making as a redundancy and fault-tolerance problem, deploy-
ing multiple agents to solve the same tasks. Through exper-
iments on benchmark problems—including resource alloca-
tion, question answering, topic classification and summariza-
tion—we find that simpler strategies, such as Majority Voting
and Decentralized architectures, often outperform more com-
plex feedback-based systems in terms of consistency. Feed-
back mechanisms, while sophisticated, risk error propaga-
tion and destabilization, highlighting the value of indepen-
dent decision-making and aggregation. These findings em-
phasize the importance of balancing simplicity and reliability
when designing robust multi-LLM systems for industrial and
mission-critical applications.

Introduction
The deployment of Large Language Model (LLM)-based
systems has rapidly evolved, extending beyond individ-
ual task-solving capabilities to forming collaborative multi-
agent systems. By leveraging LLMs’ natural language un-
derstanding, reasoning, and planning capabilities, multi-
agent systems have found applications in various domains,
including autonomous coordination in logistics (Lang et al.
2008), collaborative robotics in manufacturing (Guo and
Zhang 2009), and intelligent decision-support in health-
care (Shakshuki and Reid 2015). These systems promise
to address challenges that single-agent solutions struggle to
tackle, such as handling distributed tasks, dynamic environ-
ments, and complex inter-agent dependencies.

While much of the focus in developing these systems
has been on enhancing performance metrics such as accu-
racy or task efficiency, the practical deployment of multi-
agent LLM systems, particularly in industrial settings, de-
mands a greater emphasis on reliability. In high-stakes appli-
cations like supply chain optimization, resource allocation,
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and emergency response, reliability is often more critical
than peak performance (Xu and Saleh 2021). For instance,
industries may accept a model achieving 80% accuracy, pro-
vided it maintains this performance consistently under ex-
pected operating conditions. Variability and inconsistency in
system outputs, even at higher performance peaks, can lead
to disruptions and costly errors in industrial workflows (Ge
et al. 2017).

The transition from single-agent to multi-agent
paradigms, such as ensemble systems of agentic AI
systems, introduces additional layers of complexity and
uncertainty (Hu, Lu, and Clune 2024). Multi-agent systems
aggregate decisions from multiple models, which raises
questions about how aggregation strategies influence system
reliability. As such, redundancy and fault tolerance become
pivotal, especially when multiple agents are deployed to
solve the same problem to enhance robustness. Aggregation
strategies must be carefully designed to ensure that combin-
ing the outputs of multiple agents leads to consistent and
reliable decisions, rather than amplifying inconsistencies
(Gupta and Vaidya 2020; Awad et al. 2017).

In this paper, we explore these challenges on multiple
problems involving LLM agents, specifically 1) resource al-
location, 2) question answering, 3) topic classification and 4)
summarization, as a preliminary study. The resource alloca-
tion problem is a critical and widely applicable domain in
industrial operations. Meanwhile, the question-answering,
topic classification and text summarization problems are
classical tasks in natural language processing. We evalu-
ate various multi-agent aggregation strategies and aim to
identify approaches that enhance reliability without sacri-
ficing system performance in terms of accuracy. Through
our empirical experiments, we anecdotally demonstrate that
increased architectural complexity does not necessarily im-
prove reliability, emphasizing the importance of balanc-
ing sophistication with robustness. We hope our findings
will provide insights into the design of reliable multi-agent
LLM-based systems and contributes to the growing body of
research on deploying multi-agent LLM-based systems in
industrial environments.

Related work
As AI systems continue to rise, so do the complexity and
challenges of deploying them to manage a wide range of



Figure 1: Aggregation strategy of (a) Single Agent, (b) Majority Voting, (c) Average Voting, (d) Spoke & Wheel, (e) Decentral-
ized, (f) Decentralized (Feedback), (g) Spoke & Wheel (Feedback).

tasks. To tackle this, researchers have focused on multi-
agents systems where each AI agent interacts and collab-
orates with each other, utilizing their specialized abilities
towards an objective or tasks that are beyond the capacity
of a single-agent. Earlier works had focused on creating so-
lutions using a single agent with the help of strategies that
split the task into smaller and less complex tasks (Chen et al.
2022; Yao et al. 2024; Wang et al. 2024; Jin and Lu 2023;
Long 2023; Besta et al. 2024). On the other hand, tasks that
require deep thought and innovation has also been demon-
strated to be effectively performed by the collaboration be-
tween multiple agents (Dohan et al. 2022; Jinxin et al. 2023;
Zhang et al. 2023; Park et al. 2023). Recent studies on stimu-
lating interactive environment (Park et al. 2023; Jinxin et al.
2023), roleplaying (Zhang et al. 2023), and reasoning (Du
et al. 2023; Liang et al. 2023), highlight the immense poten-
tial of multi-agent systems in tackling complex real-world
challenges.

In the context of developing reliable and fault-tolerant
systems, substantial research has been conducted on general
machine learning and deep learning methodologies (Amin,
Iqbal, and Shahbaz 2024; Bouhata et al. 2024; Myllyaho
et al. 2022). However, thus far, limited work has been di-
rected toward leveraging LLM-based multi-agent systems
for such purposes. For instance, Liu et al. have introduced
DyLAN, a dynamic network of LLM agents that opti-
mizes collaboration for task-specific reliability, achieving
notable improvements in decision-making tasks (Liu et al.
2024). Chacon-Chamorro et al. have proposed resilience
metrics to measure and enhance the adaptability of LLM-
augmented agents in cooperative environments, highlight-
ing their ability to sustain functionality amid disruptions
(Chacon-Chamorro et al. 2024). Additionally, several stud-
ies have proposed frameworks to develop multi-agent sys-
tems with fault-tolerant mechanisms such as AgentScopre
by Gao et al. (Gao et al. 2024), and AgentMonitor by Chan
et al. (Chan et al. 2024) that are capable of mitigating risks

to improve overall system reliability.
Given the proliferation of studies on multi-agent LLM

systems and their potential to be applied in diverse applica-
tions, in this work, we focus on the intersection of the fields
above. Specifically, we study how the reliability and perfor-
mance of a system that is composed of multiple LLM agents
performing the same task is affected by different aggregation
strategies.

Methods
Multi-agent architectures
As mentioned above, we focus on studying the effectiveness
of various multi-agent architectures in solving a task not just
from the aspect of accuracy but also from the aspect of con-
sistency and reliability. As such, we consider a system that
has multiple agents performing the same task with the same
input and consider various strategies of aggregating the in-
puts to study which aggregation strategy results in the most
consistent and reliable system output. While the aggregation
methods may bear similarity with certain ensembling strate-
gies found in literature, we highlight that we measure the
effectiveness of ensembling from the aspect of maximizing
reliability.

In this work, we compare six different architectures, in-
spired by architectures commonly studied in multi-agent
systems literature, together with a simple baseline of using a
single agent (Han et al. 2024; Zhang et al. 2024; Yang et al.
2024):

• Single Agent (Baseline): A single decision-making
agent using an LLM.

• Majority Voting: Multiple agents independently gener-
ate responses, and the final response is generated based
on majority voting for each agent’s response.

• Averaging: Multiple agents independently generate re-
sponses, and the final response is generated by averaging
the responses.



• Decentralized: Agents iteratively generate and refine
responses until consensus is reached. An averaged/ran-
domly selected plan is used if consensus is not reached
within a fixed number of iterations in the resource allo-
cation/QA problems, respectively.

• Decentralized (Feedback): Similar to Decentralized,
but the agents incorporate feedback from previous iter-
ations of other agents into their next response.

• Spoke & Wheel: Agents (spokes) independently gener-
ate responses, and a central agent (wheel) combines these
into a final response.

• Spoke & Wheel (Feedback): Similar to Spoke & Wheel,
but the central agent’s plan is used as feedback to guide
the agents in subsequent iterations.

Figure 1 illustrates a schematic of some of the different
configurations we study in this paper.

Experiments
In the following sections, we briefly discuss the setting of the
benchmarks we evaluate the multi-agent architectures on.

Resource Allocation
In this problem, LLM agents are tasked with allocating lim-
ited resources to satisfy demands across multiple regions,
based on given demand and resource constraints. Each re-
gion has predefined demands for multiple resource types,
and the total available resources are constrained. The task
for the LLM agents is to maximize the overall satisfaction of
regional demands (by meeting each region’s demands) while
adhering to resource constraints. An example of a simplified
problem is shown in Table 1. In this example, we show two
types of resource (water and food) demanded by three re-
gions, and the total resources being constrained to 15 units
of water and 10 units of food respectively. For this problem
where the total demand is equals to the total resources, the
optimal allocation is simply for the agent to distribute the
resources exactly to each region’s demand, without under-
or over-allocating the resources to any single region.

Region Demand (Water, Food)
Region 1 (5, 3)
Region 2 (4, 2)
Region 3 (6, 5)

Total Resources Water: 15, Food: 10

Table 1: Example configuration of regions and resource con-
straints.

Question Answering
We use the SQuAD 2.0 (Rajpurkar, Jia, and Liang 2018)
dataset for the question-answering task. Along with the
usual question-answering task, we added a formatting in-
struction to each question to see the ability of the LLM
agents to follow these instructions correctly. The formatting
instructions are randomly selected from pre-set instructions.
These instructions are designed to be easy to be evaluated

with a hard-coded evaluation method. See the Appendix for
the list of added instructions.

Topic Classification

For this experiment, we use the AG’s news topic classifi-
cation dataset (Zhang, Zhao, and LeCun 2015) as the task
for the multi-agent LLM system. In this setup, each agent
is given as input a new article and is tasked with classifying
the article as one of the topics: ”World”, ”Sports”, ”Busi-
ness” and ”Science/Technology”. Rather than performing a
numerical classification, we prompted the LLM agent to di-
rectly return the predicted topic in text.

Text Summarization

For the text summarization task, we used the
Xsum (Narayan, Cohen, and Lapata 2018) dataset.
The Xsum dataset contains 226,711 BBC news articles
paired with human-authored summaries. The task is to
generate a summary that is similar to the human-authored
summary, given one of the articles in the dataset.

Evaluation Metrics
To evaluate the effectiveness and reliability of different ar-
chitectures, we use two primary metrics: the performance
metric (specific to each task) and a reliability metric that is
common to all task.

Performance Metrics

Resource Allocation For the resource allocation problem,
the performance metric is the satisfaction, S(R) - for a given
region R measures how well the allocated resources meet the
demands of the region. For each resource r demanded by
region R, the satisfaction is capped at 100% and averaged
across all resources as follows:

S(R) =
1

NR

∑
r∈Resources

min

(
Allocation(R, r)

Demand(R, r)
, 1

)
, (1)

where NR is the total resources demanded by region R.

Question Answering For the QA problem, the perfor-
mance metrics are (1) the correctness of the answer, and
(2) the instruction following accuracy. For the correctness
metric, we used the F1 scores of the answers that are calcu-
lated using the method defined in Rajpurkar, Jia, and Liang
(2018). For the instruction following accuracy, we used a
hard-coded evaluation method to decide if an answer has
correctly followed the instruction.

Topic Classification Similar to the Question Answering
task above, since this benchmark has four only classes of
topics, we used the conventional metric of accuracy in terms
of exact word matching to score the final output of the multi-
agent LLM system.



Text Summarization Following the original paper (Ra-
jpurkar, Jia, and Liang 2018), we use the F1 ROUGE (Lin
and Hovy 2003) score to evaluate the similarity between the
generated summaries and the human-authored summaries.
We calculate the ROUGE-1 and ROUGE-2 scores, which
measure the overlap of unigrams and bigrams, respectively,
as well as the ROUGE-L, which is calculated based on the
longest sequence of words common in two summaries.

Reliability Metric
Additionally, we define reliability, κ(τ), as a metric that
measures the reliability of the multi-agent LLM system to
consistently achieve high performance across multiple, iden-
tical trials. For a given threshold τ , the reliability is defined
as the fraction of trials where the performance metric ex-
ceeds a certain threshold:

κ(τ) =

∑T
t=1 I

(
S(t) ≥ τ

)
T

, (2)

where T is the total number of trials, I(·) is an indicator
function (1 if condition is true, 0 otherwise), and S(t) is the
performance metric in trial t.

Experimental settings
In this section, we explain the parameters specific to each
experiment and additional details of our experiments are
also shown in the Appendix. We instantiate all agents us-
ing GPT-4o-mini with default hyperparameters, set the max-
imum number of feedback turns to 5 for architectures with
feedback mechanisms, and the number of independent trials
to 30.

Resource Allocation
We compare across 3 different scales/complexities (small,
medium, large) of resources allocation problems. For each
complexity of the problem, we further conduct 3 settings: a)
the total resources exactly match the total demand (equal),
b) the total resources are less than the total demand (lack)
and c) the total resources are greater than the total demand
(excess).

Given the stochastic nature of the LLMs, we observed that
there are instances when the LLM agent does not respond in
the specified template or hallucinates additional regions/re-
sources that are not provided. In those cases, we replace the
proposed solution of that specific agent with a default tem-
plate of allocation, with all allocations set to 0. This is to
emulate the scenario of one agent’s failure in a multi-agent
system and allow us to better study the benefits of having
multiple agent in creating a more fault-tolerant system.

Question Answering
We randomly selected 30 questions from the SQuAD 2.0
test dataset. For each of the questions, we added randomly-
sampled formatting instructions as explained in the previous
sections. We prompted the agents to generate the answer to
the question first and then prompted them to follow the in-
structions to add the required information in the specific for-
mat.

Topic Classification
In this experiment, we randomly sampled 100 articles from
the AG’s news test dataset and prompted the agents to clas-
sify the news articles into one of the four classes. Since this
task, doesn’t require a structured output that is required in
the resource allocation problem, any output text that is not
an exact match to one of the four topic classes is considered
to be an incorrect classification.

Text Summarization
We randomly sampled 50 articles from the test split in the
Xsum dataset. For each of the articles, we prompted the
agents to make a one-line concise summary of the article.
The prompts used to generate the summaries are shown in
the Appendix.

Results
Resource Allocation
Figure 2 presents the reliability of different aggregation
mechanisms across a range of satisfaction thresholds for the
medium-scale allocation problem under three resource set-
tings: equal, lack, and excess. Comparing these figures, we
observe a general trend where reliability in achieving high
satisfaction thresholds decreases as the availability of re-
sources shifts from excess to scarcity. This observation vali-
dates the proposed framework, as the challenge of resource
allocation naturally increases when resources are limited, re-
quiring a higher degree of effective allocation.

More interestingly, across all settings, aggregation strate-
gies such as Majority voting and Decentralized approaches
consistently form the Pareto front of reliability curves. This
indicates that these strategies are more reliable in achieving
higher satisfaction thresholds. A greater Pareto front of the
reliability curve reflects the effectiveness of an aggregation
strategy, as it demonstrates a method’s ability to consistently
achieve higher satisfaction thresholds. In contrast, strategies
incorporating feedback mechanisms rank the lowest in reli-
ability across all settings, while the remaining strategies lie
in between.

To quantitatively assess whether these observations hold
true and generalize across other resource allocation prob-
lems of varying complexities and configurations, we rank
the aggregation strategies by computing the area under the
reliability curves (AURC). An ideal aggregation strategy
would achieve an AURC of 1 in scenarios where resources
meet or exceed demand, signifying its ability to consistently
satisfy resource requirements across all trials. Table 2 sum-
marizes the computed AUC values for all experiments.

For small-scale problems, no single method significantly
outperforms others. However, as the problem complexity in-
creases to medium and large scales, majority voting emerges
as a leading aggregation strategy. One exception is observed
in the Medium-Equal configuration, where the Decentral-
ized strategy achieves a slightly higher AURC, with major-
ity voting ranking second. Reliability curves for additional
experiments are included in the Appendix for reference.



Table 2: Summary of Area Under Reliability Curves values for different aggregation methods, for the Resource Allocation,
Question Answering, Classification and Text Summarization tasks.

Single
Agent

Majority
Voting

Avera-
ging

Decen-
tralized

Feedback
Decen-
tralized

Spoke
& Wheel

Feedback
Spoke

& Wheel

Resource
Allocation

Small
Equal 0.999 1.000 0.999 1.000 0.999 1.000 0.988
Lack 0.680 0.688 0.654 0.699 0.688 0.702 0.706

Excess 0.709 0.669 0.705 0.665 0.702 0.669 0.666

Medium
Equal 0.897 0.915 0.890 0.961 0.695 0.835 0.627
Lack 0.689 0.691 0.668 0.673 0.534 0.623 0.532

Excess 0.802 0.826 0.801 0.816 0.729 0.805 0.722

Large
Equal 0.640 0.711 0.626 0.623 0.531 0.567 0.447
Lack 0.564 0.671 0.593 0.574 0.532 0.559 0.424

Excess 0.672 0.816 0.682 0.648 0.582 0.579 0.450
Question

Answering
Correctness 0.722 – – 0.732 0.725 0.729 0.670
Instruction
Following 0.824 – – 0.838 0.811 0.801 0.744

Classification Accuracy 0.831 0.833 – 0.833 0.826 0.704 0.686

Text
Summarization

ROUGE-1 0.290 – – 0.289 0.289 0.284 0.287
ROUGE-2 0.089 – – 0.087 0.089 0.087 0.090
ROUGE-L 0.219 – – 0.217 0.218 0.213 0.218

(a) Demand = Resources (b) Demand > Resources (c) Demand < Resources

Figure 2: [Allocation] Reliability of different multi-agent aggregation mechanisms to consistently meet a satisfaction threshold
for medium-scale problems with (a) equal demand and resources, (b) demand greater than resources, and (c) demand less than
resources.

Question Answering
Figure 3(a) and (b) presents the reliability of the correctness
(F1 score) and the instruction following, for different aggre-
gation mechanisms. Note that in these experiments, we do
not compare the majority voting or average voting strate-
gies as that requires further processing of each agent’s text
output in order to decode the final output and we leave this
study as a potential future research. Similar to the results for
the resource allocation problem, aggregation strategies such
as Decentralized and Spoke &Wheel consistently achieve
higher reliability given a threshold, and feedback mecha-
nisms get relatively lower reliability. Additionally, Table 2
presents the area under the reliability curve for various ag-
gregation strategies. Decentralized approach achieve highest
value among all the methods.

Topic Classification
Figure 3(c) and the results in Table 2 presents a similar trend
as well when we observed the results of the experiment.
In these set of experiments, we excluded Average Voting

strategy, but included the Majority Voting as it is relatively
straightforward to take a majority of a predicted class, but
non-trivial to take an average of the predicted class with-
out access to predicted class probabilities. From Figure 3(c),
we can see that Decentralized, Majority Voting (occluded
in the figure) and Single Agent architectures mainly forms
the forefront of the Pareto, while the Spoke & Wheel ar-
chitecture performs the worse, both in terms of reliability
and accuracy threshold. Analyzing the AURC of the differ-
ent method, once again, we see that Majority Voting and De-
centralized architectures yields the best AURCs.

Text Summarization
Similar to the Question Answering experiments, we exclude
the study of Majority Voting and Average Voting from these
experiments. Figure 4 presents the reliability of the summary
qualities measured with the R1, R2, and RL ROUGE scores.
We observe that the scores are agnostic to aggregation strate-
gies, unlike in other problems. Specifically, the Decentral-
ized approach did not improve the score, and the feedback
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Figure 3: [QA]/[Topic Classification] Reliability of different aggregation methods to consistently achieve (a) F1 score thresh-
olds, and (b) instruction following score thresholds, and (c) classification accuracy thresholds.

methods did not degrade the scores compared to the naive
Single Agent approach.

Discussion
While majority voting is a well-established aggregation
strategy in ensemble learning for machine learning mod-
els, the findings of this study are unique for several rea-
sons. First, unlike traditional strategies that primarily focus
on improving accuracy in predictions or decisions, our work
emphasizes reliability—the ability to consistently perform
well, particularly at high-performance thresholds. This shift
represents a significant departure from conventional evalua-
tion metrics in aggregation studies and places a spotlight on
consistency as a critical factor in multi-agent collaboration.

More importantly, while many recent approaches have
proposed and leveraged feedback mechanisms—such as it-
erative refinement, cascading refinement, or self-critic ap-
proaches—to enhance performance, our results challenge
these assumptions. Interestingly, our preliminary findings
demonstrate that simpler architectures, such as Majority
Voting or Decentralized aggregation, outperform more com-
plex feedback-based mechanisms in terms of reliability on
most of the experiments, with the exception of text sum-
marization. We hypothesize that this counterintuitive out-
come arises from the inherent stochasticity of LLM-based
agents and their connectivity within the system architecture.
In multi-agent systems with highly connected architectures
or feedback loops, any erroneous or suboptimal output from
an agent risks being propagated to other agents. This ampli-
fication of errors can destabilize the entire system, especially
when feedback cycles propagate inaccuracies over multiple
iterations.

In contrast, having multiple decentralized, independent
agents,coupled with an aggregation mechanism that com-
bines their decisions without direct inter-agent influence, in-
troduces redundancy that can enhance reliability. This con-
clusion aligns with conventional principles of building ro-
bust systems through redundancy, where duplicating com-
ponents ensures continued functionality even in the presence
of component failures. By reducing the likelihood of error
propagation, decentralized strategies mitigate the risks as-
sociated with over-connected feedback-based systems. This
insight highlights the potential limitations of feedback-based
strategies in having multi-agent collaborate to complete

tasks, where achieving consistent high reliability is critical.
Our findings emphasize that simplicity in aggregation de-
sign can sometimes yield better results, particularly for sce-
narios where consistent reliability, rather than just accuracy,
is paramount.

Interestingly, for text summarization tasks, our experi-
ments showed very little difference between the aggrega-
tion methods. Whether we used Majority Voting, Decentral-
ized, or Feedback-based approaches, the results were almost
the same. We posit that this is because of how summariza-
tion is currently evaluated, mainly using ROUGE scores.
These scores compare the generated summaries to refer-
ence summaries written by humans, focusing on how much
the words overlap. However, ROUGE may not fully capture
other important aspects like how well the summary conveys
the meaning or flows naturally. Because of this, it’s hard to
see the impact of different aggregation methods in tasks such
as summarization, where the generated output is not eas-
ily evaluated objectively. This highlights how the choice of
evaluation metric can affect the results, especially for tasks
where quality is more subjective or harder to measure.

Additional considerations
Based on the results shown, we can see that Majority Voting
and Decentralized architectures are strong candidates that
can result in reliable multi-agent systems. However, one ma-
jor drawback of majority / average voting is that they’re only
naively applicable to scenarios where the outputs are nu-
merical or where a majority could be counted. In situations
where the output of multiple agents are lexically different
but semantically similar, an aggregation strategy which can
mimic the properties of majority voting while maintaining
the reliability of the system will be an interesting avenue for
future work.

Additionally, while this study evaluates three datasets
across three distinct tasks, we acknowledge that the results
are not exhaustive. For instance, the performance of indi-
vidual agents within the system could likely be enhanced
through additional fine-tuning of prompts, the introduction
of stricter guardrails, or methods to enforce more structured
outputs. Despite these potential improvements, we antici-
pate that our primary observations will remain valid: im-
proving the reliability of individual agents is expected to
directly enhance the reliability of the overall system. This
underscores the importance of focusing on both individual
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Figure 4: [Summarization] Reliability of different aggregation methods to consistently achieve (a) ROUGE-1, (b) ROUGE-2,
and (c) ROUGE-L score thresholds.

agent optimization and robust aggregation strategies when
designing dependable multi-agent systems.

Conclusion
Our study highlights the critical role of redundancy and
fault tolerance in designing reliable multi-agent systems,
particularly in contexts where consistent performance is
paramount. Through experiments on multiple resource al-
location problems, we observe that simple strategies, such
as majority voting, exhibit the best consistency, reliably
maintaining performance above a certain threshold over a
set number of trials. This finding underscores the value of
straightforward yet effective approaches in achieving robust-
ness, even when more complex architectures might appear
promising. Future work will extend the exploration of multi-
agent architectures to broader benchmarks and domains, in-
cluding cases where both inputs and outputs are potentially
unstructured, and strategies such as majority voting are in-
tractable to implement. By addressing these challenges, we
aim to further refine and expand the applicability of LLM-
driven multi-agent systems, paving the way for more versa-
tile and dependable solutions.
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Appendix
Details on resource allocation problems
The following tables shows the specific numbers we used
for the different resource allocation problems. The numbers
are selected arbitrarily and are only tune to ensure that the
total resource either meet, exceed or is less than the specific
demand for each of the setting.

Region Demand (Water, Food)
Small Scale - Balanced Resource Allocation

Region 1 (8, 6)
Region 2 (12, 7)
Region 3 (6, 10)

Total Resources (Water: 26, Food: 23)
Small Scale - Insufficient Resources

Region 1 (8, 6)
Region 2 (12, 7)
Region 3 (6, 10)

Total Resources (Water: 20, Food: 15)
Small Scale - Excess Resources

Region 1 (8, 6)
Region 2 (12, 7)
Region 3 (6, 10)

Total Resources (Water: 40, Food: 35)

Table 3: Comparison of Small Scale Scenarios: Balanced,
Insufficient, and Excess Resource Allocation.

Region Demand (Water, Food)
Medium Scale - Balanced Resource Allocation

Region 1 (10, 8)
Region 2 (15, 5)
Region 3 (5, 12)
Region 4 (8, 3)
Region 5 (6, 10)
Region 6 (12, 6)

Total Resources (Water: 56, Food: 44)
Medium Scale - Insufficient Resources

Region 1 (10, 8)
Region 2 (15, 5)
Region 3 (5, 12)
Region 4 (8, 3)
Region 5 (6, 10)
Region 6 (12, 6)

Total Resources (Water: 40, Food: 30)
Medium Scale - Excess Resources

Region 1 (10, 8)
Region 2 (15, 5)
Region 3 (5, 12)
Region 4 (8, 3)
Region 5 (6, 10)
Region 6 (12, 6)

Total Resources (Water: 60, Food: 50)

Table 4: Comparison of Medium Scale Scenarios: Balanced,
Insufficient, and Excess Resource Allocation.

Prompts
In this section, we provide the details of the prompts we used
for prompting each LLM agent.

Region Demand (Water, Food, Medicine)
Large Scale - Balanced Resource Allocation

Region 1 (5, 3, 2)
Region 2 (7, 5, 3)
Region 3 (4, 6, 5)
Region 4 (8, 4, 3)
Region 5 (6, 7, 4)
Region 6 (10, 5, 6)
Region 7 (3, 2, 1)
Region 8 (9, 8, 7)
Region 9 (7, 6, 5)

Total Resources (Water: 59, Food: 46, Medicine: 36)
Large Scale - Insufficient Resources

Region 1 (5, 3, 2)
Region 2 (7, 5, 3)
Region 3 (4, 6, 5)
Region 4 (8, 4, 3)
Region 5 (6, 7, 4)
Region 6 (10, 5, 6)
Region 7 (3, 2, 1)
Region 8 (9, 8, 7)
Region 9 (7, 6, 5)

Total Resources (Water: 45, Food: 35, Medicine: 25)
Large Scale - Excess Resources

Region 1 (5, 3, 2)
Region 2 (7, 5, 3)
Region 3 (4, 6, 5)
Region 4 (8, 4, 3)
Region 5 (6, 7, 4)
Region 6 (10, 5, 6)
Region 7 (3, 2, 1)
Region 8 (9, 8, 7)
Region 9 (7, 6, 5)

Total Resources (Water: 80, Food: 65, Medicine: 50)

Table 5: Comparison of Large Scale Scenarios: Balanced,
Insufficient, and Excess Resource Allocation.



Resource Allocation Prompt

Available resources:
{environment.resources}.
Regions and their demands:
{environment.regions}.

Provide an allocation plan (dictionary) where each
resource (e.g., ’water’, ’food’) is mapped to another
(dictionary) region IDs and allocated amounts. Ensure
allocations respect the total available resources and
your goal is to meet all the demand or as much demand
as possible.

As an example, respond directly in the format:
{{’water’: {’region1’: 1, ’region2’:
5, ’region3’: 1}, ’food’:
{’region1’: 3, ’region2’: 3,
’region3’: 3}}}.

Think step-by-step, and ensure all the resources
and regions are included in your response.
Do not hallucinate additional regions or resources.
Do not add any additional response and do not respond
with JSON format.

Resource Allocation Prompt for agents with feedback

Available resources:
{environment.resources}.
Regions and their demands:
{environment.regions}.

These are proposed plans from other planners in
previous rounds. Use these to the next plan if applica-
ble
{previous plans}.

Provide an allocation plan (dictionary) where each
resource (e.g., ’water’, ’food’) is mapped to another
(dictionary) region IDs and allocated amounts. Ensure
allocations respect the total available resources and
your goal is to meet all the demand or as much demand
as possible.

As an example, respond directly in the format:
{{’water’: {’region1’: 1, ’region2’:
5, ’region3’: 1}, ’food’:
{’region1’: 3, ’region2’: 3,
’region3’: 3}}}.

Think step-by-step, and ensure all the resources
and regions are included in your response.
Do not hallucinate additional regions or resources.
Do not add any additional response and do not respond
with JSON format.

Topic Classification Prompt

Classify the following news article into one of these
topics: World, Sports, Business, Science/Technology.

Article: {article}

Respond with only the topic name (e.g., ”World”).
Do not add additional explanations or responses.

Topic Classification Prompt with feedback

Classify the following news article into one of these
topics: World, Sports, Business, Science/Technology.

Article: {article}

Previous suggestions and feedback from other agents:
{Feedback}

Based on this feedback and the given article, refine
your classification. Respond with only the topic name
(e.g., ”World”). Do not add additional explanations or
responses.

Question Answering System Prompt

You are an intelligent assistant that answers questions
only based on the knowledge provided by the user.
Answer in one or several words or a phrase, as short as
possible, in brackets []. There could be additional re-
quests from the user shown as ”Additional Instruction”.
Please make sure to follow those instructions. It is
possible that the context does not have the information
needed to answer the question. In that case, answer
NA. We don’t need a period at the end of the answer.
There could be other assistants working on the same
task, and they may have different opinions. Please
check their answers if provided, and use them to make
your final answer better. You don’t have to use others’
answers if you don’t agree with them.

* Example
Context: Tokyo, Japan’s capital, blends tradition and
modernity with landmarks like Meiji Shrine and Tokyo
Skytree, world-class cuisine, and neighborhoods like
Shibuya and Asakusa.
Question: What city is Japan’s capital?
Additional Instruction: Add some explanations in less
than 15 words.
Answer: [Tokyo] Tokyo is the capital of Japan and it
blends tradition and modernity.



Question Answering Prompt

Context: {context}
Question: {question}.
Additional Instruction: {instruction}.
Answer:

Question Answering Prompt with feedback

Context: {context}
Question: {question}.
Additional Instruction: {instruction}.

These are proposed answers from other assistants
in previous rounds. Use these in the next answer if
applicable:
Round {trial}, Agent {agent index}’s Answer:
{answer[trial][agent index]}
## Loop over trial and agent index

Answer:

Text Summarization System Prompt

You are a professional writer who is able to summarize
a given document in one short sentence. Make it
concise but informative. There could be other writers
working on the same summarization task, and they may
have different opinions. Please check their answers if
provided, and use it to make your final summarization
better, if needed. You don’t have to use others’ answers
if you don’t agree with them.

* Example
Document: The Central Bank announced a 0.5%
increase in interest rates, bringing the benchmark
rate to 5.5%, the highest level in over a decade. The
decision aims to curb persistently high inflation, which
remains above the target of 2%. Economists warn that
higher borrowing costs may slow consumer spend-
ing and business investments, potentially impacting
economic growth. However, Central Bank Governor
Lisa Martinez emphasized that controlling inflation is
crucial to stabilizing the economy in the long term.
Financial markets responded with mixed reactions, as
stock indices dropped while bond yields rose. Analysts
expect further rate hikes if inflation does not show
signs of easing in the coming months.
Summary: The Central Bank raised interest rates
to 5.5% to tackle inflation, sparking concerns over
potential economic slowdown.

Text Summarization Prompt

Document: {document}
Summary:

Text Summarization Prompt with feedback

Document: {document}

These are proposed summaries from other assis-
tants in previous rounds. Use these in the next
summary if applicable:
Round {trial}, Agent {agent index}’s Sum-
mary: {summary[trial][agent index]}
## Loop over trial and agent index
Summary:

Additional experimental results
In this section, we present the reliability plots for the other
experiments that were not shown in the main paper.

Figure 5: [Allocation] Reliability of different multi-agent
aggregation mechanisms to consistently meet a satisfaction
threshold for small scale problem with equal demand and re-
sources for the small scale problem.

Figure 6: [Allocation] Reliability of different multi-agent
aggregation mechanisms to consistently meet a satisfaction
threshold for small scale problem with demand greater than
resources for the small scale problem.



Figure 7: [Allocation] Reliability of different multi-agent
aggregation mechanisms to consistently meet a satisfaction
threshold for small scale problem with demand less than re-
sources for the small scale problem.

Figure 8: [Allocation] Reliability of different multi-agent
aggregation mechanisms to consistently meet a satisfaction
threshold for large scale problem with equal demand and re-
sources for the large scale problem.

Figure 9: [Allocation] Reliability of different multi-agent
aggregation mechanisms to consistently meet a satisfaction
threshold for large scale problem with demand greater than
resources for the large scale problem.

Figure 10: [Allocation] Reliability of different multi-agent
aggregation mechanisms to consistently meet a satisfaction
threshold for large scale problem with demand less than re-
sources for the large scale problem.
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Figure 11: [QA] Comparison of F1 scores achieved by dif-
ferent methods. The box plots represent the distribution of
scores across 30 test runs for each method, with the median
and interquartile ranges shown. Individual scores for each
test run are displayed as scatter points on the left side of
each box plot, illustrating the spread of results.
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Figure 12: [QA] Comparison of instruction-following scores
achieved by different methods. The box plots represent the
distribution of scores across 30 test runs for each method,
with the median and interquartile ranges shown. Individual
scores for each test run are displayed as scatter points on the
left side of each box plot, illustrating the spread of results.


