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Abstract

Past work has demonstrated that autonomous vehicles can
drive more safely if they communicate with one another than if
they do not. However, their communication has often not been
human-understandable. Using natural language as a vehicle-to-
vehicle (V2V) communication protocol offers the potential for
autonomous vehicles to drive cooperatively not only with each
other but also with human drivers. In this work, we propose
a suite of traffic tasks in autonomous driving where vehicles
in a traffic scenario need to communicate in natural language
to facilitate coordination in order to avoid an imminent colli-
sion and/or support efficient traffic flow, which we model as
a general-sum partially observable stochastic game. To this
end, this paper introduces a novel method, LLM+DEBRIEF, to
learn a message generation and high-level command policy for
autonomous vehicles through multi-agent discussion. To eval-
uate our method, we developed a gym-like simulation environ-
ment that contains a range of accident-prone driving scenarios
that could be alleviated by communication. Our experimental
results demonstrate that our method is more effective at gener-
ating meaningful and human-understandable natural language
messages to facilitate cooperation and coordination than un-
trained LLMs. Our anonymous code and demo videos are avail-
able at https://anonymous.4open.science/r/talking-vehicles.

Introduction
Driving is inherently a multi-agent problem (Dinneweth et al.
2022) – each driver makes independent decisions based on
their own perceptions while interacting with others on the
road. As we transition towards (semi-)autonomous vehicles,
centralized control (Antonio and Maria-Dolores 2022) of all
cars may appear efficient, but it is impractical and unlikely
to be widely accepted. On the other hand, cooperative driv-
ing through communication channels is more practical and
can still offer significant benefits even when implemented
in a limited capacity. Past research has demonstrated the
advantages of cooperative perception among autonomous
cars (Wang et al. 2020; Cui et al. 2022; Xu et al. 2022b).
However, these benefits are restricted to vehicles that use
the same encoder, limiting broader participation from those
with different encoders and leaving human drivers reliant
solely on their local perceptions without being privy to the
collaboration efforts.
Copyright © 2024, Association for the Advancement of Artificial
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As the use of visual-language models in state-of-the-art
driver-assistant systems grows, enabling natural language rea-
soning for traffic situations, we are motivated by the potential
for human drivers and semi-autonomous vehicle controllers
to benefit from cooperative driving. To this end, we have
developed a cooperative driving system that leverages natural
language for communication and coordination. Prior works
have explored training driving agents to make and explain
driving decisions in natural language (Wayve 2023; Ma et al.
2023) or to coordinate with human drivers within a vehi-
cle (Deruyttere et al. 2022), leveraging extensive datasets
(Kim et al. 2018, 2019; Qian et al. 2023; Sima et al. 2023).
However, there is a lack of datasets featuring inter-vehicle
communication in natural language alongside corresponding
driving actions to facilitate cooperation.

Recent advances in Large Language Models (LLMs)
present new opportunities for agents to speak and understand
natural language messages in cooperative driving scenarios.
In this work, we explore the potential of LLM agents to
collaborate using natural language and optimize communica-
tion and collaboration strategies over self-play interactions,
avoiding the need to collect real-world data. For this purpose,
we develop TalkingVehiclesGym, a multi-agent simulation
framework that realistically models vehicle-to-vehicle com-
munication in a set of accident-prone scenarios. Building
on an LLM agent framework, we proposed a multi-agent
learning method for LLM agents, LLM+DEBRIEF, which
enables LLM agents to engage in centralized discussions
post-interaction to refine their cooperation strategies, which
are later incorporated into decentralized agent execution. Our
experimental results in simulation demonstrate that when
LLM agents struggle to collaborate effectively, our proposed
learning method helps them learn what to communicate and
how to respond to messages through interactions.

While this work has not gotten to the point of fully human-
usable communication — e.g., by enforcing short, real-time
messaging — this paper takes a crucial step in that direction
by restricting all messages to be in natural language. Specifi-
cally, we demonstrate that natural language communication
can enable cooperative perception and negotiation among
autonomous vehicles. Steps remain to accelerate the system
for real-time deployment, integrate real human behaviors
and messages, and guarantee the safety and reliability of the
communication system.



Problem Definition
In this paper, we focus on the subset of agents that are actively
participating in the cooperation. We assume that these coop-
erative vehicles implicitly aim to help each other, treating all
other (referred to as "background") vehicles as uncontrollable
elements of the environment. Therefore, we frame the prob-
lem of Talking Vehicles as a partially observable stochastic
game (POSG), focusing on optimizing the social welfare of
a focal population (F) (Agapiou et al. 2022) defined as the
joint reward of all participating agents as the primary ob-
jective. The reward functions associated with each agent’s
individual tasks may or may not fully align, necessitating
coordination among agents to achieve high joint rewards.
Each agent’s observation space is limited to a partial view of
the full state, and agents make decisions in a decentralized
manner based on their own partial observations and received
messages from other agents. In this problem, each agent’s ac-
tion space comprises two main components: (1) generating
messages and (2) controlling the vehicle. In this work, the
message generation space is a natural language (English).

A POSG is defined by the tuple
〈I,S, {Oi}, {Ai},P, {Ri}〉, where I = {1, 2, ..., N}
refers to the identities of all agents in a scenario; S is the
state space comprehensively describing the environment;
Oi is the observation space describing agent i’s view of the
state; Ai is the action space of agent i; P represents the state
transition function S ×A1 ×A2 × ...×AN → S;Ri is the
reward function of agent i.

The focal group of agents is denoted by F ⊆ I,
representing a subset of all agents I. The goal for each
agent i ∈ F is to optimize a policy πi to maximize the
expected cumulative task returns of all the agents in F ,
given background agent policies outside the focal group:
max{πi}i∈F E

[∑
i∈F

∑t=∞
t=0 Ri(st,at)

∣∣∣{πj}j /∈F,j∈I

]
,

where st is the state at time t, and at = (at1, a
t
2, ..., a

t
N ) is

the joint action of all agents at time t.
The policy is structured to have both control and communi-

cation capabilities. Specifically, πi(Oi, {Mj}j∈F ) → Ai

maps the observation of agent i and received messages
{Mj}j∈F to its action space Ai = 〈Mi, Ci〉, whereMi rep-
resents the message generation space, which is constrained
to human-understandable language, and Ci denotes the ve-
hicle control space with dimensions for throttle, brake, and
steering inputs. At time step t, the message Mi generated
by agent i is broadcast to all other connected agents, which
are those within a specific communication radius, at the next
time step t+ 1.

This problem presents the following technical challenges
to the machine-learning community:

1. How can learned agents understand the situation and gen-
erate meaningful messages to help others perceive the
environment or potentially negotiate about motion plans
in natural languages;

2. How can learned agents comprehend the received natural
language messages and incorporate them into high-level
cooperative driving decisions?

Assumptions. In this work, we assume that agents intend
to communicate truthfully, accurately conveying their inten-
tions and following through on their stated decisions. While
all focal agents are designed to act cooperatively, avoiding
deceptive messages or aggressive actions that could disrupt
others’ driving objectives, we assume that background agents
in our framework are not explicitly optimized for cooperation
or adversarial behavior. Additionally, we assume that agents
communicate in a manner that ensures the syntax and seman-
tics of all messages are human-understandable, such that a
human operator could comprehend the exchanged informa-
tion if controlling one of the vehicles. Exploring scenarios
where these assumptions are explicitly lifted could be an
interesting direction for future work.

Environment
To provide concrete and typical driving scenarios that expose
the talking vehicles challenge, we have developed a simu-
lation environment, TalkingVehiclesGym, which is a multi-
agent gymnasium environment for the closed-loop evaluation
of urban driving policies. TalkingVehiclesGym supports a
flexible configuration of multi-agent scenarios, incorporat-
ing heterogeneous agents such as language agents, sensory
agents, human agents, heuristic behavior agents, etc. It also
enables in-episode communication between agents using a
realistically simulated communication protocol MQTT. The
simulation dynamics are built on CARLA (Dosovitskiy et al.
2017), a high-fidelity urban driving simulator.
Scenarios (P) and Rewards (R). TalkingVehiclesGym has
been set up with several accident-prone scenarios where
multi-agent communication could be advantageous. Further-
more, TalkingVehiclesGym demonstrates how to tackle differ-
ent collaboration dynamics, as shown in Figure 1. Scenarios
labeled with Cooperative Perception represent opportu-
nities for agents to benefit from shared information about
areas outside their immediate line of sight and scenarios
tagged with Negotiation are designed to demonstrate the
advantages of agents discussing and reconciling conflicts in
their plans. In each scenario, a focal group (F) of agents is
defined and operates alongside background agents governed
by pre-configured behaviors. Each focal agent is assigned a
task described in natural language, with success determined
by reaching target locations within a specified time limit with-
out collisions. An agent who successfully completes the task
earns a reward of +1, while any agent involved in a collision
incurs a penalty of −1. Remaining stagnant at any point until
timeout results in a reward of 0, because conservative policies
are safe, even if they are not ideal. Agents without motion
targets, such as a stationary truck in cooperative perception
tasks, do not earn rewards directly for themselves. However,
the optimization objective encourages these agents to send
messages that assist others in achieving their tasks. For de-
tailed scenario descriptions and rewards setup, please refer
to Appendix .
Observation Space (O). Our environment integrates a di-
verse range of sensor and simulator inputs inherited from
CARLA. To emphasize reasoning and multi-agent learning,
we simplify environmental perception for text-based agents
by introducing a rule-based, partially observable captioner.
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Figure 1: Overview of Scenarios and Agent Roles. Green circles: Focal agents, agents aim at establishing coordination through communication;
Red circles: Potential colliders; Blue circles: Background agents.

This module abstracts away the perception task, that would
otherwise require object detection or vision-language mod-
els, by directly converting scenario informationsuch as the
motion states of the ego vehicle and others, lane details, and
road conditionsinto natural language descriptions that convey
factual information while maintaining the partial observabil-
ity imposed by the agent’s line-of-sight sensors. For agents
equipped with a transmitter/receiver device (transceiver),
real-time communication is enabled during episodes. These
agents can broadcast and receive structured messages contain-
ing key information such as the content, timestamp, sender
ID, and sender location by subscribing to topic-specific com-
munication channels. Received messages ({Mj}j∈F ) are
stored in a buffer, with recent message exchanges incor-
porated into the agent’s observations to support decision-
making. An example of a text-based observation is provided
in Appendix .

Action Space (A). The action space for each agent encom-
passes both vehicle control and communication. The control
space C includes dimensions for throttle, brake, and steer-
ing. To reduce the decision-making frequency, agents execute
high-level vehicle motion commands represented as temporal
sequences of low-level vehicle controls (Ct, Ct+1, ..., Ct+k),
where each command spans k time steps. These high-level
commands include atomic actions such as go (maintain a
target speed), stop, slow down, speed up, change to
the left lane, and change to the right lane. The
message generation spaceM is restricted to natural language
tokens in this work but is flexible enough to support other
communication modes, such as neural network-based repre-
sentations. In this work, messages are generated alongside
the high-level commands at a frequency of every 0.5 seconds
(k = 10 simulation steps).

Method
The core technical challenge of the talking vehicles problem
is to enable agents to communicate in natural language in
order to facilitate cooperation and act correspondingly. To
establish an initial solution, we adopt an LLM agent frame-
work (Figure 2) that prompts LLMs as a foundational prior

for autonomous agents to engage in human-like communica-
tion, structuring the message within natural language space,
allowing agents to interpret messages and make informed
driving decisions. A key challenge of using LLMs lies in
that they are not specifically trained for driving tasks. To
overcome this limitation, we introduce LLM+DEBRIEF (Al-
gorithm 1), a novel multi-agent learning methods for LLM
agents built upon feedback loops that allow LLM agents to
iteratively refine their communication and motion control
policies through trial-and-error interactions with confederate
agents. Inspired by how humans reflect and debrief after a
Hanabi game, we enable agents to discuss cooperative strate-
gies after each interaction episode.

Agent Policy
An agent acts according to an LLM policy
πi(Oi, {Mj}j∈F ) → 〈Mi, Ci〉, where the distribution
over actions follows the LLM used by the agent. Here, Oi

represents a comprehensive text observation encompassing
task and goal descriptions, environment details, and
common traffic rules, expressed as a sequence of tokens
{toi }. A received message Mj = {tmj } and a message to
send Mi = {tmi } are also token sequences generated by
language agents. Ci = {tci} represents a token sequence
for high-level commands. The joint probability of selecting
a command and generating a message is expressed as
Pi({tmi }; {tci}|{toi }; {{tmj }}j∈F ) where ";" indicates token
concatenation and the language model determines the
probabilities.

In-Context Knowledge. Instead of fine-tuning the weights
of LLMs via gradient-based methods, we adapt the
policy by modifying input tokens (prompts). We de-
fine Ki = {tki } as agent i’s accumulated knowl-
edge and Si = {tsi} as its cooperative strategy. The
joint probability of generating commands and messages
is then influenced by these additional prompt tokens:
Pi({tmi }; {tci}|{tki }; {tsi}; {toi }; {{tmj }}j∈F ).

Chain-of-Thought (CoT) Reasoning. Research has shown
that LLMs make decisions better when provided with suffi-
cient context. To leverage this, we prompt LLMs to reason
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Figure 2: LLM+DEBRIEF Agent Framework. A LLM+DEBRIEF agent is provided a task to complete for each scenario, and the environment
will provide the text observation of the surroundings and message dialogues. Along with the previous learned knowledge, the policy first
performs chain-of-thought reasoning about all the inputs, generates messages to others, and drives decisions based on observation and in-episode
communication. Then, the agents within the multi-agent environment will make the decisions based on their corresponding policies. After each
episode, agents receive feedback from the environment evaluation containing information like timeout, success, or collision information. This
feedback, along with the {observation, reasoning, message, commands, and others’ reactions}, are stored in a replay buffer for future learning.
During the debriefing phase, agents are able to revise their strategy and knowledge about decision-making by learning others’ reasoning during
and after episodes. Such knowledge is then stored as a long-term knowledge for future decision-making.

step-by-step about the environment, incorporating observa-
tions, received messages, and in-context knowledge. The
reasoning process generates an output token sequence Ri =
{tri }. Following this reasoning, the LLM agent generates
structured action tokens by combining the reasoning with the
inputs: Pi({tmi }; {tci}|{tki }; {tsi}; {toi }; {{tmj }}j∈F ; {t

r
i }).

The final output is in a JSON format with keys: "command"
and "message".

Agent Learning: Post-Episode Debriefing
The learning process is depicted in Figure 2. Initially, the
LLM agents interact with each other in the scenarios, ac-
cumulating experience, which is stored in a replay buffer.
Following the interaction phase, the agents engage in a de-
briefing session where they utilize past experiences as context
to collaboratively refine a cooperative strategy. The outcomes
of these discussions are distilled into two critical compo-
nents: knowledge (Ki = {tki }) and cooperative strategies
(Si = {tsi}). These components are subsequently integrated
as in-context knowledge for future interactions, playing a
pivotal role in shaping and improving the policy.

Replay Buffer. We store transition data Ti =
〈oi,t, ai,t, oi,t+1〉, which includes current and next ob-
servations, commands, messages, and reasoning in a replay
buffer, serving a repository for further learning and iterative
refinement. When an episode concludes, the environment
evaluates each agent’s performance and provides scalar
rewards along with verbal feedback, such as Vehicle
109 collided with Vehicle 110. or Vehicle 111
stagnated too long to complete its task. Each
transition in the replay buffer is subsequently retrospectively

labeled with enriched metadata, including responses from
other agents, collision details (e.g., time to collision),
stagnation specifics, and final rewards.

Batch Context Sampling. Before engaging in the post-
episode discussion (debriefing), each learning agent reflects
on past experiences by sampling a batch of learning data
from its replay buffer. While analyzing the entire trajec-
tory would provide a comprehensive understanding of failure
cases, computational constraints necessitate sampling a sub-
set of key frames. To prioritize relevant data, the sampling
process heuristically assigns higher probabilities to transi-
tions that occur immediately before collisions, involve actions
contributing to collisions, or lead to stagnation due to agents
slowing down. Additionally, transitions that feature more in-
tensive multi-agent interactions are given more weight. These
selected samples serve as the context for subsequent analy-
sis and strategy formulation, allowing the agent to focus on
critical scenarios for improving performance.

Debriefing. A debriefing session begins when an episode
concludes in a failure and is conducted in a turn-based
manner over N rounds, with a focus on improving coop-
eration in future interactions. The speaking order is deter-
mined randomly for each session, and agents take turns
speaking in a round-robin format. The agent chosen to speak
first is responsible for proposing a joint cooperative strat-
egy (S1,S2, ...Si∈F ) for everyone participating in the de-
briefing (the focal group). This agent begins by reasoning
through its transition data batch, analyzing the consequences
and influence on other agents of its actions, and formulat-
ing a proposed strategy. Subsequently, the other agents take



turns sharing their perspectives, providing feedback, or of-
fering alternative insights based on their analysis of their
own batches of experience. After the discussion, each agent
summarizes the discussion to develop individual cooperative
strategies (Si) and knowledge (Ki). These outcomes serve
as in-context guidelines for future driving tasks. This joint
discussion for future individual decision-making structure
mirrors the principles of the Centralized Training Decentral-
ized Execution (CTDE) framework (Bernstein et al. 2002), a
widely utilized approach in multi-agent learning.

Implementation Details
We utilize gpt-4o-mini with a temperature of 0.2 for the
agent policy, making decisions and collecting experiences
every 0.5 seconds (10 simulation frames). Received message
dialogs are maintained within a 2-second window based on
message age during each episode. The debriefing process is
conducted after each episode for a total of 30 episodes, com-
prising N = 1 round of discussion among agents followed
by a final round of individual reflection to summarize and
consolidate the discussion outcomes. To enable stronger rea-
soning and summarization capabilities, gpt-4o is employed
for the debriefing sessions and reflection. The transition data
are sampled from the trajectory with a batch size of 4. Further
details, including decision latencies and additional configura-
tions, are available in Appendix .

Experiments
In this section, we aim to empirically evaluate the following
hypotheses:

(1) LLM agents can establish collaboration without prior
interactions;

(2) Natural language communication enhances the perfor-
mance and coordination of LLM agents compared to
those without communication;

(3) Decentralized reflection enables LLM agents to improve
their collaborative ability over interactions;

(4) Centralized discussion among LLM agents provides addi-
tional improvements in collaboration and communication
compared to decentralized reflection.

Metrics. Evaluation metrics are established based on
the outcomes of agents who can incur reward (reward-
eligible) for their tasks in the focal group, which is
scenario-specific. For a scenario with N reward-eligible
agents in the focal group, evaluated over M episodes,
we utilize three key metrics: 1. the average total re-
ward (R), normalized by the group size, is given by
1
N

1
M

∑M
m=1

∑
i∈F

∑t=∞
t=0 Ri(st,at); 2. the average col-

lision rate (CR), normalized by the group size, is
1
N

1
M

∑M
m=1

∑
i∈F 1(agent i involved in a collision), where

collisions may involve both focal and background agents; 3.
the average success rate (SR), also normalized by the group
size, is 1

N
1
M

∑M
m=1

∑
i∈F 1(agent i succeeded). Here, 1 is

the indicator function, equal to 1 if the event occurs and 0
otherwise.

Baselines. We established several baselines and scenarios
to evaluate our hypotheses:
(1) an LLM agent using Chain-of-Thought (CoT) reasoning

only (Zero-shot),
(2) an LLM agent with CoT reasoning contextualized with

knowledge from decentralized reflection (Reflection),
(3) an LLM agent that corrects past actions via decentral-

ized reflection, storing these corrections in a vector-
based, retrievable memory and uses few-shot retrieved
example augmented generation (Correction+RAG (Re-
trieval Augmented Generation)), The retrieval augmented
method without communication (Correction+RAG
(Silent)) adapts DiLU (Wen et al. 2023a), a non-
communicating single-agent LLM-based approach that
drives via reflection, to our environment. The multi-agent
communication extension of DiLU, AgentsCoDriver (Hu
et al. 2024), resembles the Correction+RAG (Comm)
method, but they do not actively optimize the messages.
For a fair comparison across baseline LLM agents, we
do not initialize the knowledge with human data, nor is
there human involvement during the learning process.

We apply the same batch context sampling method for reflec-
tion or correction for all LLM agent baselines as our method.
Additionally, we include Coopernaut (Cui et al. 2022), a
LiDAR-based cooperative driving method, as a reference for
cooperative perception. Note that since Coopernaut has the
advantage of using intermediate sensor data representations
rather than natural language communication, we expect it to
perform better than any of our evaluated methods. However,
we include it as an aspirational reference point for possible
future methods.

Experimental Setup. For each baseline1, we consider two
settings labeled as “Silent" and “Comm", respectively. In the
“Silent" setting, the method operates without communication;
policies focus solely on controlling the vehicle without gen-
erating messages. In contrast, the “Comm" setting allows
a method to either generate messages alone or both mes-
sages and driving commands. For each LLM-based learning
method, we allow agents to interact for up to 30 episodes
per scenario, with early stopping if the scenario is solved,
indicated by 10 consecutive successful episodes. After train-
ing, we evaluate each method over 30 episodes and report the
metrics listed above.

Quantitative Results
Tables 1 and 2 present the quantitative evaluation of all meth-
ods across tasks. Notably, none of the LLM methods in
this work operate in real-time, with our approach requir-
ing approximately 12 seconds per decision step using gpt-
4o-mini. However, the inference latency of LLM agents
primarily depends on context length and generation speed,
both of which are expected to improve with advancements
in LLM architectures and inference techniques. On average,
the natural language message bandwidth remains below 50

1Except for LLM+Debrief, which is only tested under the
“Comm” setting since it is particularly designed for improving multi-
agent communication.



words per decision step, requiring less than 0.01 Mbps. Table
3 in Appendix provides detailed latency measurements and
message size statistics.

Communication does not guarantee collaboration in
zero-shot interactions. Our zero-shot experiments, con-
ducted in both silent and communication modes, reveal that
LLM agents (gpt-4o-mini) without prior coordination can-
not reliably establish collaboration solely through indepen-
dent decision-making. While communication in zero-shot
settings generally improves the task success rate compared to
silent mode, the enhancement remains marginal. This result
suggests that LLM-based reasoning alone is insufficient for
fostering effective coordination without prior training or ex-
plicit strategies. Our preliminary experiments with Llama3-
8B-Instruct and gpt-4o follow a similar pattern.

Decentralized reflection and correction with RAG mem-
ory reduce collisions. The decentralized learning methods,
Reflection and Correction+RAG, show significant promise
in reducing collision rates across tasks. Reflection allows
agents to independently analyze their observations, actions,
and outcomes to generate individual policies that lead to safer
decision-making than Zero-shot. However, this self-reflection
process often results in overly conservative behavior (e.g.
in the perception-red-light scenario), resulting in fre-
quent timeouts and limiting improvements in overall success
rates despite a lower collision rate. In contrast, the Correc-
tion+RAG method demonstrates more robust performance
than Reflection under decentralized learning. By fully record-
ing successful episodes and refining commands and messages
at key frames selected through heuristic batch sampling, it ef-
fectively corrects past behaviors while preserving successful
coordination patterns. However, although the method im-
proves the control strategy, we found it qualitatively does not
always generate consistent messages with the actions, possi-
bly due to the open-loop revisions. Future work should assess
its generalization capability in environments with diverse
dynamics and varying environmental descriptions.

Centralized debriefing enhances coordination more
than decentralized reflection. The debriefing method, which
focuses on generating explicit cooperation strategies, enables
LLM agents to achieve more stable collaboration compared
to decentralized reflection or zero-shot approaches, evidenced
by higher success rates across tasks. However, debriefing re-
mains less effective than sensor- and representation-based
methods (Coopernaut) in certain scenarios.

The potential of natural language communication for
multi-agent coordination. Natural language communica-
tion demonstrates strong potential for enhancing multi-agent
coordination. Across tasks, methods operating in commu-
nication settings generally outperform their silent counter-
parts. Agents trained with communication also show greater
adaptability and improve performance over interactions. Con-
versely, in silent modes, agents tend to adopt more cautious
behaviors, but their performance remains suboptimal even af-
ter reflection or correction. These results suggest that natural
language communication can play a pivotal role in enabling
agents to understand and handle complex scenarios, offering
a promising avenue for advancing multi-agent coordination
in domains like autonomous driving.

Qualitative Analysis
This section uses the negotiation-highway-merge sce-
nario as an example scenario to analyze policy behaviors
and qualitatively examines the learned knowledge and co-
operation strategies. For detailed insights into the learned
knowledge, see Appendix , and refer to the supplementary
videos for comprehensive demonstrations of policy behav-
iors.

First, we present a recorded communication exchange be-
tween agents in a demonstration video:

Vehicle 121 (on the highway): Vehicle 120, I am
slowing down to create a gap for your merge. Please
proceed safely.

Vehicle 120 (merging) replied: Thank you, Vehi-
cle 121, I will speed up to merge into the gap you
create. Please maintain your speed to facilitate my
merge.

This form of communication is highly human-
interpretable, paving the way for future human par-
ticipation in multi-agent collaboration. In contrast, the
(x, y, z, feature) latent representation generated by Cooper-
naut lacks interpretability for humans and requires all ve-
hicles in the system to share the same encoder, limiting its
flexibility in mixed-autonomy settings. While in this work
we do not enforce that the communication be suitable for
humans to participate in the collaboration directly, the results
suggest that it may be possible to move in that direction in
the future by enforcing short, real-time messages.

Second, the in-context knowledge developed through the
debriefing process demonstrates a clear and coherent coop-
eration strategy, defining each agent’s role and their coor-
dination mechanisms (Appendix ), in contrast to the purely
reactive policies formed through self-reflection without ex-
plicit discussion of cooperation strategies (Appendix ).

Third, agents behave according to their learned knowl-
edge and cooperation strategy. In the negotiation-
highway-merge scenario, the debriefing-based policy’s be-
havior follows the developed structured cooperation strat-
egy: when the merging vehicle requests to enter the highway,
highway vehicles explicitly slow down to create a gap, en-
abling a smooth and coordinated merge. In contrast, under
the Correction+RAG (Silent) mode, the lack of clear co-
operation strategy leads to uncertainty. Both the merging and
highway vehicles struggle to determine the right of way, of-
ten resulting in either a collision or a prolonged indecisive
interaction at the junction. We encourage readers to watch the
supplementary videos accompanying this paper for a deeper
understanding of the qualitative differences between policies.

Related Work
Vehicle-to-vehicle Communication. Vehicle-to-Vehicle
(V2V) or Vehicle-to-everything (V2X) communication offers
the potential to effectively facilitate multi-vehicle cooper-
ation, improving the safety and reliability of autonomous
vehicles in urban driving scenarios. Existing research pre-
dominantly concentrates on cooperative perception data sets
(Yu et al. 2022; Xu et al. 2022b; Li et al. 2022) and tasks like
cooperative detection and prediction (Wang et al. 2020; Chen



Table 1: Experiment Results for Cooperative Perception Scenarios.

Method
Scenario Overtake (Perception) Red Light Left Turn

Name LLM Comm R ↑ CR ↓ SR ↑ R ↑ CR ↓ SR ↑ R ↑ CR ↓ SR ↑
Zero-shot (Silent) Yes No -0.87 93.3 6.7 -0.87 93.3 6.7 -0.93 96.7 3.3
+Reflection (Silent) Yes No -0.26 36.7 10.0 -0.87 93.3 6.7 -0.27 63.3 36.7
+Correction+RAG (Silent) Yes No 0.07 33.3 40.0 -0.73 86.7 13.3 0.20 40.0 60.0

Zero-shot (Comm) Yes Yes -0.46 73.3 26.7 -0.33 66.7 33.3 -1.00 100.0 0.0
+Reflection (Comm) Yes Yes 0.40 30.0 70.0 0.07 10.0 26.7 0.60 20.0 80.0
+Correction+RAG (Comm) Yes Yes 0.70 6.7 76.7 0.73 13.3 87.7 -0.60 76.7 16.7
+Debrief (Comm) Yes Yes 0.63 16.7 80.0 1.00 0.0 100.0 0.60 20.0 80.0
Coopernaut (Comm) No Yes 1.00 0.0 100.0 0.97 0.0 96.7 1.00 0.0 100.0

Table 2: Experiment Results for Negotiation Scenarios.

Method
Scenario Overtake (Negotiation) Highway Merge Highway Exit

Name LLM Comm R ↑ CR ↓ SR ↑ R ↑ CR ↓ SR ↑ R ↑ CR ↓ SR ↑
Zero-shot (Silent) Yes No -0.13 55.0 41.7 -0.87 93.3 6.7 -0.53 63.3 36.5
+Reflection (Silent) Yes No 0.80 3.0 83.3 -0.37 68.3 31.7 0.20 40.0 60.0
+Correction+RAG (Silent) Yes No 0.00 50.0 50.0 0.03 48.3 51.7 -0.16 58.3 41.7

Zero-shot (Comm) Yes Yes 0.53 23.3 76.5 -1.00 100.0 0.0 -0.60 65.0 35.0
+Reflection (Comm) Yes Yes 0.73 11.7 85.0 0.53 23.3 76.7 0.32 33.3 65.0
+Correction+RAG (Comm) Yes Yes 0.83 6.7 90.0 -0.07 53.3 46.7 -0.16 58.3 41.7
+Debrief (Comm) Yes Yes 1.00 0.0 100.0 1.00 0.0 100.0 0.63 10.0 73.3

et al. 2019; Xu et al. 2022a), leveraging sensor data from
cameras, LiDAR, and other resources. The message aggre-
gation strategies include early fusion (Qiu et al. 2022), late
fusion, and intermediate fusion (Wang et al. 2020). Consider-
ing the limited V2V bandwidth, efforts were made to reduce
the message size (Hu et al. 2022). Aoki, Higuchi, and Alt-
intas (2020) developed a reinforcement learning method for
selecting what information to be transmitted in cooperative
perception. Although Cui et al. (2022) developed end-to-end
driving policies and derived the critical information from
expert supervision, the cooperation is still completed at the
perception level. Notably, the focus of past approaches (do
Nascimento and de Lucena 2017) on communication effi-
ciency has prevented human understandability: the messages
have all been in an inscrutable latent representation, with
all participating vehicles needing to be informed explicitly
about the syntax and semantics of the representation. In con-
trast, our work focuses on the message in the natural language
space to enhance both participation by all vehicles, eventually
including those under human control, and communication
understandability.

Multi-Agent Social Interactions with LLMs. Large Lan-
guage Models (LLMs) show promising communication and
reasoning capabilities, suggesting their potential in multi-
agent interaction scenarios. For instance, Generative Agents
(Park et al. 2023) represents an early attempt at employing

LLM agents for free-form chatting, demonstrating the be-
lievable behaviors of LLM agents in spreading information.
However, this study did not evaluate the LLMs’ capabilities
in planning or solving multi-agent tasks. Cicero (Bakhtin
et al. 2022), on the other hand, finetunes a language model to
imitate human behaviors from a dataset to generate truthful
messages in the game of Diplomacy, which is mixed-motive
and requires communication in natural language. They train
reinforcement learning policies to analyze the dialogue se-
lect actions and generate deceptive messages through value
filtering. Recent works on communication games Werewolf
(Xu et al. 2023a) and Avalon (Light et al. 2023) demonstrate
that LLMs can achieve impressive results in multi-agent set-
tings. This success is particularly notable when LLMs are
combined with reinforcement learning or fine-tuning. Shi
et al. (2023) find that LLMs can be applied to achieve Ad
Hoc teamwork in the Avalon game. Recently, a generative
agent-based social simulator (Vezhnevets et al. 2023) has
been proposed to serve as a test bed for multi-agent LLM
interactions as well.

LLMs for Autonomous Driving. LLMs have shown some
potential in solving various autonomous driving tasks. In
particular, they are promising in tackling corner cases (Wen
et al. 2023b) due to their reasoning ability and the common-
sense knowledge embedded, yielding a more generalizable
autonomous driving stack. Recent studies have explored var-



ious approaches to tailor state-of-the-art LLMs for driving.
Similar to other embodied tasks (Driess et al. 2023; Brohan
et al. 2023), a foundational challenge lies in grounding LLMs
in the real world—the LLMs need to perceive and understand
the traffic scenarios. A straightforward approach is to obtain
the observations from oracle perception models (Mao et al.
2023b) and convert them to textual descriptions (Mao et al.
2023a; Sha et al. 2023; Jin et al. 2023; Cui et al. 2023). Some
other studies tackled this challenge by introducing Visual
Language Models (VLMs), which are adapted to driving do-
mains through in-context instruction tuning (Ma et al. 2023)
or fine-tuning (Wayve 2023; Xu et al. 2023b; Ding et al. 2023;
Yang et al. 2023). To enhance LLMs’ reasoning ability, prior
works have investigated incorporating handcrafted guidance
and examples in the prompts (Sha et al. 2023; Jin et al. 2023;
Cui et al. 2023), structuring the reasoning procedure (Mao
et al. 2023b; Sima et al. 2023), and fine-tuning the models
on driving datasets. Notably, fine-tuning LLMs and VLMs
requires an extensive amount of driving data with language
labels. While a limited number of such datasets are avail-
able (Kim et al. 2018, 2019; Malla et al. 2023), they were
mostly created in the pre-LLM era and, thus, are not designed
for LLM fine-tuning. While several works have attempted
to adapt existing language-driving datasets for LLM fine-
tuning (Ding et al. 2023; Xu et al. 2023b; Ma et al. 2023),
growing attention has been drawn to directly augment large-
scale multimodal driving datasets, such as nuScenes (Caesar
et al. 2020), Waymo (Sun et al. 2020), and ONCE (Mao et al.
2021)), with language labels (Qian et al. 2023; Shao et al.
2023; Sima et al. 2023; Nie et al. 2023). Note that existing
models were predominantly evaluated in open-loop fashions,
except for Shao et al. (2023); Sha et al. (2023); Jin et al.
(2023). The open-loop evaluation results may not effectively
imply the models’ closed-loop performance after deploy-
ment. In contrast, similar to Surrealdriver (Jin et al. 2023),
we conduct closed-loop tests of the proposed multi-agent
communication and control framework in CARLA (Doso-
vitskiy et al. 2017). More importantly, none of the existing
works have explored LLMs in a multi-agent setting with V2V
communication as we did. LanguageMPC (Sha et al. 2023)
was demonstrated in a multi-agent scenario, yet its controller
is centralized.

Conclusion and Future Work
In summary, we identify a novel application domain for large
language models in multi-agent learning systems, talking
vehicles, where agents are required to send natural language
messages and understand natural language messages to in-
corporate them into driving plans. Solutions to the talking
vehicles problem have the potential to enable autonomous
agents to facilitate cooperative perception and negotiation
with human drivers. As a first attempt to solve the talking vehi-
cles challenge, we propose a new method, LLM+DEBRIEF,
for generating messages and comprehending received mes-
sages. Our experiments show the effectiveness of LLM+DE-
BRIEF quantitatively and qualitatively.

Limitations and Future Work. While we provide initial
evidence of LLM+DEBRIEF’s potential in the talking vehi-

cles problem, this research opens up several exciting future
research areas for further exploration and development. First,
the current LLM+DEBRIEF framework takes text descrip-
tions as observations, which relies on an idealized percep-
tion system. The TalkingVehiclesGym environment is able
to provide multi-modal sensor observations. In future work,
we are interested in developing a multi-modal extension of
LLM+DEBRIEF, which allows end-to-end perception and
reasoning over the rich context information embedded in
multi-modal observations. Second, this paper reports on a
successful proof-of-concept, we are interested in scaling the
evaluation benchmark and solution to more diverse traffic
scenarios and operation conditions resembling real-world
V2V communication, e.g., subject to time delays, adversar-
ial attacks, and limited bandwidths. Last, our framework
opens up the exciting potential to create a cooperative driv-
ing system for mixed-autonomy traffic scenarios. We are
interested in realizing this potential, by studying the talking
vehicles problem with human-in-the-loop experiments and
exploring framework design to enable efficient communica-
tion between autonomous vehicles and human drivers.We
refer readers to Appendix for a full discussion of limitations
and future work.
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Method
The Algorithm 1 implements LLM+DEBRIEF, a centralized
multi-agent learning framework that leverages communica-
tion and reflection using large language models (LLMs) to
enhance coordination between agents in a simulated environ-
ment.

Messages exchanged between agents during the simulation
are incorporated into their observations, allowing the agents
to adapt their strategies continuously. After completing each
episode, the environment provides feedback, which is used
to label and process the experiences in the replay buffer for
further learning. This feedback helps the agents refine their
knowledge and improve their decision-making in subsequent
episodes.

The debriefing process plays a crucial role in this algo-
rithm. After each episode, agents engage in multiple rounds
of debriefing, where they propose or revise cooperative strate-
gies based on their experiences and interactions. The order
of debriefing is randomized to simulate natural dialogues,
enhancing the realism of the communication. Once the de-
briefing rounds are complete, the agents reflect individually,
summarizing the discussions and updating their knowledge
bases. This reflection step is critical for improving future
performance, enabling agents to learn from successes and
failures.

At the conclusion of the training process, the agents knowl-
edge and policies are updated, with the final policies from
the last self-play iteration being used for further evaluations.
The entire process is designed to improve the agents ability
to communicate effectively and make informed decisions in
a multi-agent setting.

The agents use gpt-4o-mini to generate and interpret
messages, with a temperature setting of 0.2 to ensure more
deterministic outputs. The environment updates every 0.5
seconds (equivalent to 10 simulation frames), and the agents’
messages are considered relevant for up to 2 seconds, en-
suring timely and efficient communication. The experiments
were conducted on two Nvidia A40 40GB GPUs, which were
used to manage both the LLM-based policies and the simula-
tion environment. This setup allowed the agents to run their
LLM-based decision-making processes in parallel, enhanc-
ing the scalability of the system and enabling more efficient
training.

Table 3 summarizes the average latencies and message
sizes for each scenario under the communication setting,
evaluated using gpt-4o-mini on Nvidia A100 GPUs and
Intel Gen 10 CPUs. The metrics include partial observable
captioner latency (in seconds), reasoning latency (in sec-
onds), decision latency (in seconds, excluding reasoning la-
tency), and message size (in Mb). Data is aggregated over
10 episodes at each LLM decision step. Scenarios without
communication exhibit slightly lower reasoning and decision
latencies compared to those with communication within the
same order of magnitude.

Algorithm 1: Multi-Agent Centralized Debrief Reflection
with Communication

Input: Multi-agent Simulation Environment env, LLM
agents{πi∈I}, Debriefing round R.
Initialize: Knowledge {Ki∈I}, Replay Buffer Replay-
Buffer
for j=1, 2, 3... // Training epoch do

{obsi} = env.reset()
while t < T // Time step do

for i = 1, ..., N //Per agent, but execute in parallel
do

// Get CoT reasoning for each agent based on ob-
servation and knowledge
reasoningi← agents.reason(obsi, Ki)
// Get decisions for each agent based on observa-
tion and knowledge
messagei, controli ← agents.act(obs, Ki,
reasoningi)

end for
// Step the environment with actions
{next_obsi}← env.step({messagei, controli})
// Store experience to the replay buffer
ReplayBuffer.add(obs, next_obs, reasonings, mes-
sages)
// Message Dialog becomes part of the observation
{obsi}← {next_obsi} ∪ {messagei}

end while
// Get episode feedback from the environment
feedback← env.evaluate()
// Lable all the transition data in hindsight
data_post_processing(ReplayBuffer)
// Debriefing and learning from feedback, update knowl-
edge
// Randomly decide debrief order
for r = 1, ..., R do

if strategy=None then
cooperation_stategy = agentr.propose()

else
cooperation_stategy = agentr.revise()

end if
end for
//Summarize the dialogue and use it for future learning
{Ki} ← agent.reflect()({Ki})

end for
last {πi,j} during the last iteration of self-play



Table 3: Captioning, Reasoning, Decision Latency, Message Size using gpt-4o-mini LLM Policy

Latencies
Scenario Overtake Left Turn Red Light Overtake Highway Merge Highway Exit

Captioner Latency (s) 0.022 0.023 0.025 0.022 0.017 0.016
Reasoning Latency (s) 10.32 10.89 9.93 9.57 12.10 10.55
Decision Latency (s) 1.06 1.25 1.37 0.86 1.05 1.27
Message Size (Mb) 0.0016 0.0013 0.0014 0.0014 0.0005 0.0005

Environment
The environment follows gymnasium and PettingZoo API,
assuming a parallel-acting environment because we lever-
age this feature to parallel language model inference. We
made significant changes to support multi-agent communi-
cation and heterogeneous agent configuration in CARLA.
TalkingVehiclesGym wraps around the CARLA server and
the client to set up agents as a bridge between the simulator
and learning agent policies that are able to learn from replay
buffers. Language Communication Agents can the MQTT-
based transceiver we implemented, and the communication
is among Agents instead of going through server.

Prompts
This figure serves as a demonstration of the prompts; the
prompts that we use are more complex as they are structured
in the code.



Env (Server + Client)

Agents
Sensor subscription
Message passing

Scenario

Vehicles

Other actors

Policy
learning/human/

heuristic

Captions, feedbacks
Sensor data, reward

Control / Message

Apply control

Carla Data Provider
Experience
Obs, action, next 

obs, reward, 
feedback

CARLA Server

ClientEvaluator

Reward

Feedback

Talking Vehicles Gym
A multi-agent, gym-like (pettingzoo), high-fidelity, communication-supporting, scenario-based environment

Assume perfect perfect perception from 
sensors, and we have atomic tests to 
understand reasons for  failure episodes

Figure 3: TalkingVehiclesGym

Table 4: Example Scenarios. Here we describe the fundamental composition of each accident-prone scenario, where the background agents
can be configured in terms of density, controlling policies, and communication capabilities.

Interaction Type Scenario Name Description

Cooperative
Perception

Overtake A vehicle plans to overtake a broken and stopped truck by
moving into the opposite lane. The truck can still communi-
cate but the opposite-going car can not.

Left Turn A vehicle tries to turn left on a left-turn yield light when a
truck is blocking the view of the opposite lane. The truck is
able to communicate.

Red Light Violation A vehicle is crossing the intersection when there is another
vehicle running the red light. Lidar fails to sense the other
vehicle because of the lined-up vehicles waiting for a left
turn, one of those cars being able to communicate.

Negotiation
Overtake A vehicle is going to borrow the opposite lane to overtake

a stopped truck. The truck is not able to connect, but an
opposite-going car is able to communicate.

Highway Merge A vehicle is going to merge onto the highway but the target
lane has continuous traffic flows. A vehicle on that lane is
able to communicate and alter plans.

Highway Exit A vehicle is going to exit the highway but it needs to cross
lanes where there is a traffic flow. A vehicle in the flow is
able to communicate and alter plans.

Limitations and Future Work
Although we demonstrate some initial success of LLM+DE-
BRIEF in the talking vehicles problem, this research opens
up several areas that require further exploration and develop-

ment.

Inference Time. The response time of large language
models (LLMs) can be prohibitive, particularly when rapid
decision-making is critical. Currently, it takes several seconds



System
You are driving a car, and your goal is to accomplish a given <task>.
You can coordinate with any other vehicles to avoid collisions and or reduce wait time. I will give you 
description of the driving situation from your LiDAR perception, but note that it may be partially 
observable.\nThe observations are formatted as:  
Observation: <observation>
Possible actions are: 1. stop (stop the vehicle) 2. go (follow the planned route)

1. Sign of the Lane ID indicate the direction of the lane.
2. Your received messages are from other vehicles. Be sure to analyze the messages and how that message 
will affect you.
3. You decide an action every 10 frames (0.5 seconds).
4. Do not switch your action unless it is necessary.

User
'Observation: You are driving the Vehicle 465, and it is a vehicle.lincoln.mkz_2020. Your 
current speed is: 4.26 m/s, and the speed limit is: 8.33 m/s.   
The traffic light is currently: green. You are at an intersection. Around you, there are 
other vehicles:
(1)Vehicle 467 is a vehicle.carlamotors.carlacola, and is     
stationary. It is at an intersection. It is 3.83 meters behind you and 3.66 meters to 
your left.
(2)Vehicle 466 is a vehicle.audi.tt, traveling at speed: 8.11 m/s. It is
moving closer to you. It is at an intersection. It is 3.95 meters ahead of you and 2.58 
meters to your left.
Your task is: pass the intersection if the traffic lights are green. 
Analyze the other vehicles in the situation, received messages from other vehicles and 
how to react or negotiate to accomplish your task safely.

Agent
Based on the observation, I can analyze the situation as follows:\n\n1. Vehicle 467 
(Carlacola) is stationary and is at an intersection,    
which means it is not a threat to my movement.
2. Vehicle 466 (Audi TT) is traveling towards me and is at an intersection. It is 
moving at a speed of 8.11 m/s, which is    
slightly above the speed limit. This vehicle may pose a threat to my movement if it 
does not slow down or yield to me.
Considering the task is to pass the intersection if the traffic lights are green, I 
should prioritize my safety and the safety of other vehicles.
Action: 2. go (follow the planned route)
I will continue to follow the planned route and pass the intersection, but I will 
also keep an eye on Vehicle 466 and be prepared to adjust my speed or action if 
necessary to avoid a collision.

User
You MUST respond with an action, formatted as a JSON object with the following 
structure:
command: <command>
where you replace <command> with your actual command, chossing from: go, stop
Do nothing else but return the action.

Agent
{"command": "go"}



for LLMs to process and respond to prompts, which is too
slow for real-time applications. Future efforts could explore
model distillation techniques to create smaller, more efficient
models that retain the capabilities of their larger counterparts
but operate at a faster pace.

Human Evaluation. Designing an intuitive and user-
friendly interface for human interaction with autonomous
vehicles is essential. Although our framework opens up the
potential to cooperate with human drivers, the complexity of
effective communication interfaces is substantial. Compre-
hensive human-centered evaluations using human-friendly
interfaces are deferred to future studies.

Communication Challenges. Real-world vehicle-to-
vehicle communication faces numerous challenges, including
time delays that result in outdated information and the
potential for adversarial attacks with deceptive messages.
Future research should focus on developing methods to
mitigate these risks, ensuring timely and secure exchanges of
information. Techniques such as real-time data verification
and robust communication protocols will be critical for
enhancing the reliability and safety of V2V systems.

Multi-modal Perception. Our experiments primarily rely
on text-based inputs, assuming an idealized perception sys-
tem, due to the strong performance of existing LLMs and
the nascent state of multi-modal pre-trained models. The
TalkingVehiclesGym allows for the integration of various
sensors, presenting an opportunity to experiment with and
refine multi-modal foundation models. Future work should
leverage these capabilities to address the complex dynamics
of real-world environments, enhancing the applicability of
LLMs across different sensory inputs.

Scalability and Generalization While this paper re-
ports on a successful proof-of-concept, the scalability of
LLM+DEBRIEF to handle diverse traffic scenarios and dif-
ferent environmental conditions has not been extensively
tested. Future research should investigate the generalization
capabilities of the model across various settings and under
different and denser traffic conditions to ensure its robustness
and reliability in a wider range of real-world applications.

Knowledge Preservation and Batch Sampling The de-
tails of the learning framework LLM+DEBRIEFcould be
further improved. For example, selecting what data to learn
from and how to sample the critical data and assign credits
to each step, especially in the multi-step tasks. Another is-
sue is that the LLMs could lose context during learning if
we ask them to revise the existing knowledge, causing the
knowledge “unclean" issue and instability in the learning if
we integrate the knowledge revision too much.

Example Learned Knowledge and Cooperative
Strategies

The following knowledge are fully generated by LLMs with-
out human modification.

Red Light (Perception)
Car1 (Proceeding Forward with Green Lights)

knowledge: As a vehicle tasked with passing the intersec-
tion safely and timely when the traffic light is green, I must
remain vigilant and responsive to any warnings about poten-
tial threats, such as vehicles approaching against a red light.
If a threat is identified, I should prepare to stop immediately,
prioritizing safety over timeliness, and only proceed once the
threat has passed and the intersection is confirmed clear. I
should rely on real-time updates from vehicles with a clear
view of the intersection, as they provide critical information
on potential hazards. By preparing to stop when alerted to a
threat and proceeding only when safe, I can ensure a safe and
efficient passage through the intersection without causing
unnecessary stagnation.

cooperative strategy: In our refined cooperative strategy,
the vehicle with the best view of the intersection, typically
a stationary large vehicle in the left-turn lane, will contin-
uously monitor the traffic situation and communicate any
potential threats, such as vehicles approaching against a red
light. Upon identifying a threat, this vehicle will immediately
alert all others to prepare to stop. Once the threat has passed,
it will promptly communicate the all-clear signal. The ve-
hicle closest to the intersection with a green light should
proceed first, followed by others in a staggered manner to
maintain flow and avoid congestion. As a vehicle approach-
ing the intersection with a green light, I will remain alert and
ready to move once the all-clear is given, ensuring both safety
and efficiency in passing through the intersection. This ap-
proach ensures that vehicles do not slow down unnecessarily,
preventing stagnation while maintaining safety.

Truck (Stopped at Intersection Waiting for Turning)
knowledge: As the stationary vehicle with the best view of

the intersection, my role is to continuously monitor the traffic
situation and communicate critical information to ensure
other vehicles pass safely and efficiently. I will immediately
alert all vehicles of any potential threats, such as vehicles
approaching against a red light, and instruct those with a
green light to prepare to stop. Once the threat has passed, I
will promptly communicate the all-clear signal. The vehicle
closest to the intersection with a green light should proceed
first, followed by others in a staggered manner to maintain
flow and avoid congestion. My communication will be clear,
timely, and assertive, ensuring safety by preventing collisions
while maintaining traffic flow to avoid stagnation. Vehicles
should remain alert and ready to move once the all-clear is
given, ensuring a coordinated and efficient passage through
the intersection.

cooperative strategy: In our refined cooperative strategy,
the stationary vehicle with the best view of the intersection,
typically a large truck in the left-turn lane, will continuously
monitor the traffic situation and communicate any potential
threats, such as vehicles approaching against a red light. Upon



identifying a threat, this vehicle will immediately alert all
others to prepare to stop. Once the threat has passed, it will
promptly communicate the all-clear signal. The vehicle clos-
est to the intersection with a green light should proceed first,
followed by others in a staggered manner to maintain flow
and avoid congestion. Vehicles approaching the intersection
should remain alert and ready to move once the all-clear is
given, ensuring both safety and efficiency in passing through
the intersection. This approach ensures that vehicles do not
slow down unnecessarily, preventing stagnation while main-
taining safety.

Left Turn (Perception)
Car1 (Left-Turning) knowledge: To effectively execute a
northbound left turn at the intersection, I should: Use my
sensors to actively monitor oncoming traffic from lane -2
and ensure I yield when necessary. Rely on real-time updates
from the stationary observer vehicle for additional context,
but prioritize visually confirming that approaching vehicles
have visibly slowed down or stopped to yield before pro-
ceeding. Communicate my intention to turn left directly to
approaching vehicles, ensuring they are aware and can adjust
their speed or yield. If the approaching vehicles do not con-
firm yielding or if there is any uncertainty, I should pause and
wait for a larger gap before proceeding. Prioritize safety by
making decisions based on both communicated information
and real-time observations, ensuring a smooth and efficient
traffic flow through the intersection without causing colli-
sions or unnecessary stagnation.

cooperative knowledge: In our refined cooperative strat-
egy, the stationary observer vehicle facing south will continu-
ously monitor the intersection and provide real-time updates
on the speed and distance of all approaching vehicles, par-
ticularly those from the northbound lane. The observer will
send clear and urgent messages to approaching vehicles, in-
structing them to yield and adjust their speed to create a safe
gap for the left-turning vehicle. As the left-turning vehicle, I
will reduce my speed as I approach the intersection, allowing
more time for observation and decision-making. I will pro-
ceed with the left turn only after receiving direct confirmation
from the approaching vehicle that it is yielding and has visi-
bly slowed down. If the approaching vehicle does not confirm
yielding or is traveling at a high speed, I will pause and wait
for a larger gap before proceeding. This strategy ensures that
all vehicles are aware of each other’s intentions, reducing
the risk of collisions while maintaining smooth traffic flow
without unnecessary stopping or stagnation.

Truck
knowledge: As the stationary observer facing south, my

role is to continuously monitor the intersection and provide
real-time updates on the speed and distance of all approach-
ing vehicles, especially those from the northbound lane. I
will send clear and timely messages to approaching vehicles,
instructing them to yield and adjust their speed to create a
safe gap for the left-turning vehicle. The left-turning vehicle
should reduce its speed as it approaches the intersection and
proceed only after receiving direct confirmation from the
approaching vehicle that it is yielding and has visibly slowed
down or stopped. If an approaching vehicle does not confirm

yielding, I will advise the left-turning vehicle to pause and
wait for a larger gap. I will ensure precise communication
and coordination among all vehicles to prevent collisions and
maintain smooth traffic flow, while remaining vigilant for any
occluded vehicles and adapting the strategy as needed.

cooperative knowledge: In our refined cooperative strat-
egy, as the stationary observer facing south, I will continu-
ously monitor the intersection and provide real-time updates
on the speed and distance of all approaching vehicles, partic-
ularly those from the northbound lane. I will send repeated
and urgent messages to approaching vehicles, instructing
them to yield and adjust their speed to create a safe gap for
the left-turning vehicle. The left-turning vehicle will reduce
its speed as it approaches the intersection, allowing more
time for observation and decision-making. It will proceed
only after receiving explicit confirmation from me that the
intersection is clear and that approaching vehicles have visi-
bly slowed down or stopped. If the approaching vehicles do
not yield, the left-turning vehicle will pause and wait for a
larger gap before proceeding. This strategy ensures that the
left-turning vehicle can safely and efficiently complete the
turn without causing collisions or unnecessary stagnation,
while I facilitate communication and coordination among all
vehicles involved.

Overtake (Perception)
Car1 (Overtaking Car)

knowledge: To safely and efficiently overtake a stopped
truck in lane 1 by moving into the opposite lane, I will use
my advanced sensors, such as radar and LIDAR, to continu-
ously assess lane -1 for oncoming traffic, including detecting
occluded vehicles. I will rely on real-time updates from the
stationary vehicle, which will monitor lane -1 and provide
updates on any visible traffic. Before initiating the overtak-
ing maneuver, I must ensure that my sensor data aligns with
the stationary vehicle’s observations and infrastructure-based
sensors confirm lane conditions. If any oncoming traffic is
detected, I will maintain my current speed and position in
lane 1 until it is safe to overtake. Immediate communication
and verification of lane conditions are crucial before proceed-
ing with the maneuver. This approach ensures that overtaking
is only attempted when truly safe, preventing collisions and
maintaining smooth traffic flow without causing stagnation.,

cooperative strategy: In our cooperative strategy, the sta-
tionary vehicle in lane 1 (the truck) will continuously monitor
lane -1 for visible oncoming traffic and provide real-time
updates on any detected vehicles’ speed and distance. Simul-
taneously, the overtaking vehicle (myself, originally in lane
1) will use advanced sensors to independently verify lane
conditions, ensuring no occluded vehicles are present. Be-
fore initiating the overtaking maneuver, both vehicles must
confirm that their observations align, utilizing infrastructure-
based sensors as a third layer of verification for lane con-
ditions. If any oncoming traffic is detected, the stationary
vehicle will immediately communicate this, prompting the
overtaking vehicle to maintain its position and speed in lane
1. Once all parties confirm that lane -1 is clear, the overtaking
vehicle can proceed with the maneuver. This strategy ensures
a smooth and efficient overtaking process, minimizing the



risk of collisions and avoiding stagnation by maintaining a
steady flow of traffic.

Truck (Stopped Truck in Lane 1)
knowledge: As the stationary truck in lane 1, my role is to

continuously monitor lane -1 for visible oncoming traffic and
provide real-time updates to the overtaking vehicle behind
me, including the speed and distance of detected vehicles. I
must ensure my updates include immediate alerts about any
detected traffic and a clear confirmation signal when lane -1
is safe for overtaking. The overtaking vehicle should inde-
pendently verify lane conditions using its sensors and only
proceed when both my updates and its sensor data confirm
that lane -1 is clear. If oncoming traffic is detected, I will
immediately communicate that overtaking is unsafe, prompt-
ing the overtaking vehicle to maintain its position and speed
in lane 1. Before the overtaking maneuver, the overtaking
vehicle must confirm receipt of my updates and alignment
with its sensor data. Infrastructure-based sensors should be
utilized for additional cross-verification of lane conditions.
This approach ensures a safe and efficient overtaking ma-
neuver, preventing collisions and maintaining smooth traffic
flow.,

cooperative strategy: In our cooperative strategy, as the
stationary truck in lane 1, my role is to continuously monitor
lane -1 for any visible oncoming traffic and provide real-time
updates to the overtaking vehicle behind me. I will com-
municate the speed and distance of any detected vehicles
to ensure clarity. The overtaking vehicle, positioned behind
me in lane 1, will use its advanced sensors to independently
verify lane conditions, ensuring no occluded vehicles are
present. Before initiating the overtaking maneuver, both ve-
hicles must confirm that their observations align, utilizing
infrastructure-based sensors as a third layer of verification
for lane conditions. If any oncoming traffic is detected, I will
immediately communicate this, prompting the overtaking
vehicle to maintain its position and speed in lane 1. Once
all parties confirm that lane -1 is clear, the overtaking vehi-
cle can proceed with the maneuver. This strategy ensures a
smooth and efficient overtaking process, minimizing the risk
of collisions and avoiding stagnation by maintaining a steady
flow of traffic.

Overtake (Negotiation)
Car1 (Overtaking Car)

knowledge: Updated Knowledge for Future Driving1.
**Advance Signaling**: Always signal intentions to merge
into the opposite lane well in advance, including current
speed and planned changes.2. **Thorough Assessment**:
Carefully evaluate the speed and position of vehicles in
the opposite lane, accounting for potential occluded vehi-
cles.3. **Maintain Safe Distance**: Keep a minimum safe
distance of at least 10 meters from any vehicle in the oppo-
site lane during merging to prevent rapid closure and colli-
sions.4. **Synchronized Speed Adjustments**: Coordinate
speed changes with vehicles in the opposite lane to facili-
tate safe merging without disrupting traffic flow.5. **Proac-
tive Adaptation**: Be prepared to adjust speeds based on
the actions of other vehicles to maintain safe distances and
avoid conflicts.6. **Prioritize Safety**: If a safe gap can-

not be established, prioritize safety by slowing down rather
than accelerating.7. **Continuous Monitoring**: Maintain
situational awareness of surrounding vehicles’ speeds and
positions to make informed decisions during maneuvers.8.
**Anticipate Conflicts**: Recognize that other vehicles may
not always respond as expected; plan for alternative actions
if a merging attempt becomes unsafe.9. **Real-Time Com-
munication**: Continuously communicate intentions and
actions to vehicles in the opposite lane, ensuring both can
proceed safely and efficiently.10. **Dynamic Response**:
Be ready to slightly decelerate if encountering oncoming
traffic or if the distance to the vehicle in the opposite lane
becomes too close.11. **Clear Coordination**: Establish
clear communication protocols regarding maximum speeds
and safe distances to prevent misunderstandings during over-
taking maneuvers.12. **Cooperative Maneuvering**: Work
collaboratively with other vehicles to ensure that both par-
ties can fulfill their tasks efficiently and safely, preventing
collisions and stagnation.13. **Gradual Speed Increase**:
When overtaking, gradually increase speed while monitor-
ing the distance to the vehicle in the opposite lane to avoid
sudden closures.14. **Acknowledge Cooperation**: Appre-
ciate the cooperation of other vehicles in facilitating safe
merges, enhancing overall traffic flow and safety.15. **Con-
tinuous Feedback Loop**: Implement a feedback mechanism
to assess the effectiveness of maneuvers and adjust strategies
based on real-time interactions with other vehicles.,

cooperative strategy: In our cooperative strategy for safe
overtaking, when the overtaking vehicle intends to pass a
stationary vehicle in the opposite lane, it will signal its inten-
tion well in advance and gradually increase its speed while
ensuring it maintains a safe distance of at least 10 meters
behind the vehicle traveling in the same lane. The vehicle
in the opposite lane should maintain its current speed but
be prepared to slightly accelerate if the overtaking vehicle
approaches too closely, ensuring that the distance does not
close too quickly. If the overtaking vehicle detects oncoming
traffic or finds itself too close to the vehicle in the opposite
lane, it will slightly decelerate to create a safe gap without
causing stagnation. Continuous communication regarding
speeds and distances will be essential, allowing both vehi-
cles to adapt their actions in real-time, facilitating a smooth
overtaking maneuver while ensuring safety on the road and
preventing collisions. This coordinated approach will enable
both vehicles to complete their tasks efficiently and safely,
maintaining smooth traffic flow.

Car2 (Opposite Car)
knowledge: To effectively execute the task of going for-

ward and keeping in lane -1 while in a hurry, I should remem-
ber the following key points: 1. **Clear Communication**:
Signal intentions to nearby vehicles, especially when another
vehicle in the opposite lane plans to merge into lane -1. 2.
**Maintain Safe Distance**: Keep a safe distance of at least
10 meters from any merging vehicle to facilitate safe lane
changes and avoid collisions. 3. **Dynamic Speed Adjust-
ment**: Be prepared to adjust my speed based on the actions
of merging vehicles, ensuring a safe buffer zone without caus-
ing stagnation. 4. **Gradual Speed Changes**: Both vehicles
should gradually increase or decrease speed to prevent abrupt



changes that could lead to collisions. 5. **Prioritize Safety**:
If a merging vehicle accelerates too quickly or if the situation
becomes uncertain, adjust my speed to maintain safety while
keeping forward momentum. 6. **Situational Awareness**:
Stay vigilant about the flow of traffic, particularly regarding
vehicles traveling against the normal flow, to prevent dan-
gerous situations. 7. **Cooperative Maneuvering**: Work
collaboratively with merging vehicles to ensure safe tran-
sitions into lane -1 while maintaining progress towards my
destination. 8. **Anticipate Actions**: Proactively anticipate
the merging vehicle’s actions and adjust my speed accord-
ingly to maintain safety and avoid collisions. 9. **Real-Time
Adaptation**: Continuously communicate and adapt to the
real-time actions of other vehicles to enhance safety and
efficiency in maneuvers. 10. **Avoid Conflicts**: Recog-
nize when my task conflicts with another vehicle’s intention
and be ready to adjust my actions to prevent collisions. 11.
**Monitor Distance Closely**: Regularly assess the distance
to merging vehicles and adjust speed to maintain a safe gap,
especially during overtaking maneuvers. 12. **Prepare for
Unforeseen Situations**: Be ready to decelerate or stop if
necessary to avoid collisions, especially when encountering
vehicles traveling against the normal flow. 13. **Enhanced
Coordination**: Ensure that both vehicles involved in over-
taking maneuvers maintain clear communication about their
speeds and distances to facilitate safe and efficient transitions.
14. **Adapt to Overtaking Dynamics**: When another ve-
hicle intends to overtake, maintain speed but be prepared
to slightly accelerate or decelerate based on its approach to
ensure a safe gap is maintained. By adhering to these up-
dated principles, I can improve safety and efficiency in future
driving scenarios.,

cooperative strategy: In our cooperative strategy, when
the overtaking vehicle intends to pass a stationary vehicle in
the opposite lane, it will signal its intention well in advance
and gradually increase its speed while maintaining a safe
distance of at least 10 meters behind the vehicle traveling in
lane -1. The vehicle in lane -1, tasked with going forward
and maintaining momentum, will keep its current speed but
be prepared to slightly accelerate if the overtaking vehicle
approaches too closely, ensuring that the distance does not
close too quickly. If the overtaking vehicle detects oncoming
traffic or finds itself too close to the vehicle in lane -1, it
will slightly decelerate to create a safe gap without causing
stagnation. Continuous communication regarding speeds and
distances will be essential, allowing both vehicles to adapt
their actions in real-time, facilitating a smooth overtaking
maneuver while ensuring safety on the road and preventing
collisions. This coordinated approach will enable both vehi-
cles to complete their tasks efficiently and safely, maintaining
forward movement without causing delays.

Highway Merge (Negotiation)
Car1 (Merging Vehicle)

knowledge: To effectively merge onto the highway when
in a hurry, I should initiate communication by clearly stat-
ing my intention to merge, including my current speed and
position. As I approach the merge point, I will gradually
accelerate to match the highway speed. The vehicle in the

rightmost lane should proactively create a gap by slightly
reducing its speed earlier, allowing me to merge smoothly.
Continuous communication is essential to coordinate actions
and avoid collisions. I must maintain a safe merging distance
and speed, avoiding abrupt maneuvers, and ensure my ac-
tions do not cause stagnation or disrupt traffic flow. I should
also be prepared to adjust my speed dynamically based on
real-time feedback from the highway vehicle.,

cooperative strategy: In our cooperative strategy for merg-
ing onto the highway, the merging vehicle (myself) will ini-
tiate the process by clearly communicating its intention to
merge, including its current speed and position. As the merg-
ing vehicle approaches, it will gradually accelerate to match
the highway speed, ensuring a smooth transition. The vehicle
in the rightmost lane of the highway will proactively create a
gap by slightly reducing its speed earlier, allowing the merg-
ing vehicle to enter the lane without needing to match speeds
precisely. Throughout the process, both vehicles will main-
tain clear communication, with the merging vehicle leading
in signaling its actions and the highway vehicle responding
by adjusting speed to facilitate a safe merge. This approach
prevents collisions and avoids traffic stagnation by ensuring
a coordinated and efficient merging process.

Car2 (Highway Vehicle)
knowledge: To effectively execute my task of keeping on

the original highway lane and moving forward while in a
hurry, I should proactively create a gap by slightly reducing
speed earlier when a merging vehicle is detected, allowing it
to merge smoothly. The merging vehicle should communicate
its intention and adjust its speed to match the highway flow. I
must maintain open communication and responsiveness to the
merging vehicle’s actions, ensuring a safe and efficient merge
without causing collisions or traffic stagnation. Once the
merge is complete, I can gradually accelerate to my desired
speed, maintaining a steady flow in my lane.,

cooperative strategy: In our cooperative strategy for high-
way merging, the vehicle on the highway (myself) will proac-
tively create a gap by slightly reducing speed earlier when
an approaching merging vehicle is detected, allowing it to
enter the lane without needing to precisely match speeds. The
merging vehicle will initiate the process by clearly communi-
cating its intention to merge, along with its current speed and
position, and will gradually accelerate to match the highway
flow, ensuring a smooth transition. Throughout the process,
both vehicles will maintain open communication, with the
merging vehicle leading in signaling its actions and the high-
way vehicle responding by adjusting speed to facilitate a safe
merge. This approach ensures that the merging vehicle can
complete its task efficiently and safely, while the highway
vehicle continues forward without causing traffic stagnation
or collisions.

Highway Exit (Negotiation)
Car1 (Exiting Highway)

knowledge: To exit the highway via the leftmost lane, ini-
tiate communication to signal the intention to merge from the
high-speed lane at least 20 meters before the exit. Maintain a
reasonable speed while seeking a safe gap to merge, ideally
ahead of the left traffic flow. Upon receiving confirmation



from the vehicle in the leftmost lane that it will create a gap,
visually confirm the gap size and adjust speed to align with
the traffic flow in the target lane. Ensure continuous commu-
nication to dynamically adjust actions as needed, ensuring a
safe and efficient merge without causing collisions or traffic
stagnation. If the vehicle in the leftmost lane cannot create
a gap, be prepared to continue in the current lane and take
the next available exit. Always maintain awareness of sur-
rounding vehicles and adjust strategies as necessary to ensure
safety. Prioritize early communication, visual confirmation
of the gap, and flexibility in speed adjustments to facilitate a
smooth merge.

cooperative knowledge: In our cooperative strategy, the
vehicle intending to merge from the high-speed lane (myself)
should initiate communication at least 20 meters before the
exit, clearly signaling the intention to merge into the left-
most lane. Upon receiving this communication, the vehicle
already in the leftmost lane should promptly assess the traf-
fic conditions and, if safe, slightly adjust its speed by either
maintaining or slightly accelerating to create a gap without
causing stagnation. The merging vehicle should then align
its speed with the traffic flow in the target lane, ensuring
a smooth and timely merge. Continuous communication is
crucial, with both vehicles updating each other on their ac-
tions and intentions to dynamically adjust as needed. If a safe
merge is not feasible due to proximity or timing, the merging
vehicle should be prepared to continue in its current lane and
take the next available exit, ensuring all tasks are completed
without collisions or traffic stagnation. This approach ensures
that the vehicle in the leftmost lane can continue its task
of proceeding forward safely while facilitating the merging
vehicle’s transition.

Car2 (Staying on the Highway)
knowledge: To effectively execute the task of staying in

the leftmost lane and proceeding forward on the highway
while prioritizing safety and urgency, I should maintain a
speed close to the speed limit to ensure smooth traffic flow.
When a vehicle in an adjacent lane signals an intention to
merge into my lane, I should promptly acknowledge this
and assess traffic conditions. If traffic flow allows, I should
slightly slow down to create a gap, ensuring the merging
vehicle can align with the traffic flow without causing stag-
nation. Continuous communication is crucial, with updates
on actions and intentions to dynamically adjust as needed.
I must remain vigilant, adapting my actions based on the
traffic environment, always prioritizing safety and efficient
lane occupancy, and ensuring sufficient space for merging
vehicles. If a safe merge is not feasible, the merging vehicle
should continue in its current lane and take the next available
exit.

cooperative knowledge: In our cooperative strategy, when
a vehicle in an adjacent lane intends to merge into the left-
most lane to exit the highway, it should communicate its
intention at least 20 meters before the exit, signaling its plan
to merge. Upon receiving this communication, the vehicle
already in the leftmost lane (myself) should promptly assess
traffic conditions and, if safe, slightly slow down to create a
gap for the merging vehicle, ensuring no stagnation occurs.
The merging vehicle should align its speed with mine be-

fore reaching the critical merging point, facilitating a smooth
transition. Continuous communication is crucial, with both
vehicles updating each other on their actions and intentions to
dynamically adjust as needed. If a safe merge is not feasible
due to proximity or timing, the merging vehicle should be
prepared to continue in its current lane and take the next avail-
able exit, ensuring all tasks are completed without collisions
or traffic stagnation. This approach allows me to stay in the
leftmost lane and proceed forward safely while facilitating
the merging vehicle’s transition.

Highway Merge (Negotiation) Silent Reflection
Car1 (Merging Vehicle) knowledge: Updated Knowledge
for Merging onto the Highway:1. **Continuous Monitor-
ing:** Always be aware of vehicles behind, directly in front,
or to the side, as they pose immediate collision risks.2.
**Early Gap Identification:** Identify potential merging gaps
early and adjust speed in advance to align with these gaps,
considering both vehicles ahead and behind.3. **Dynamic
Speed Adjustment:** Accelerate only when a clear and safe
gap is confirmed. Be ready to slow down if a vehicle be-
hind is approaching quickly or if a vehicle ahead is close.4.
**Maintain Safe Distance:** Prioritize keeping a safe dis-
tance from vehicles directly ahead and behind. If a vehicle
is too close, adjust speed to increase the gap before merg-
ing.5. **Safety Over Speed:** Prioritize safe merging over
speed. Avoid aggressive maneuvers that could lead to col-
lisions, even if it means a slight delay.6. **Flexible Strat-
egy:** Adapt strategies based on real-time traffic conditions.
Reassess and choose a safer alternative if a planned action
seems unsafe.7. **Immediate Threat Focus:** Pay special at-
tention to vehicles approaching from behind in your intended
merging path. Adjust your strategy to create a safe gap with
these vehicles before merging.8. **Proximity Awareness:**
If a vehicle is within a critical distance behind, prioritize
adjusting speed to ensure a safe merging gap.9. **Cautious
Acceleration:** When a vehicle is directly in front and mov-
ing slower, maintain speed or slow down to allow it to move
further away before attempting to merge.By applying these
strategies, you can merge onto the highway more effectively
and safely, even when in a hurry.

Car2 (Highway Vehicle) knowledge: Updated Knowl-
edge for Navigating Highway Merge Junctions 1. **Early
Detection and Assessment**: Identify merging vehicles early,
focusing on their speed and proximity. If they are close, pre-
pare to adjust your speed promptly to facilitate safe merging.2.
**Prioritize Safety Over Speed**: Always prioritize avoid-
ing collisions over maintaining speed. Adjust your speed to
ensure safe distances from merging vehicles, even if it causes
a slight delay.3. **Dynamic Speed Adjustment**: Be ready
to slow down significantly if a merging vehicle is very close.
Avoid abrupt speed increases that could reduce merging space
and lead to collisions.4. **Continuous Monitoring**: Main-
tain awareness of the speed and position of nearby vehicles,
especially those merging. Be vigilant of vehicles approaching
from behind and to the side.5. **Proactive Space Creation**:
Act promptly to create space for merging vehicles. Adjust
your speed early to prevent conflicts and maintain a smooth
flow.6. **Anticipate Merging Intentions**: If a vehicle is



close and in a merging lane, anticipate its intention to merge
and adjust your speed or position accordingly to prevent col-
lisions.7. **Balance Urgency with Caution**: While in a
hurry, balance the need for speed with safety. Ensure that any
speed adjustments do not compromise the safety of merg-
ing vehicles.8. **Immediate Response to Close Proximity**:
When a merging vehicle is extremely close, prioritize imme-
diate action to slow down or create space, even if it means
temporarily reducing speed significantly.9. **Evaluate Lane
Change Options**: If safe and necessary, consider a tempo-
rary lane change to allow merging vehicles to enter your lane
smoothly, while maintaining your original route.10. **Avoid
Stagnation**: Ensure that actions do not cause stagnation or
impede traffic flow. Adjust speed dynamically to maintain
progress while ensuring safety.


