Aligning Compound Al Systems via System-level DPO

Xiangwen Wang^{1,2*} Yibo Jacky Zhang^{1*} Zhoujie Ding¹ Katherine Tsai¹ Sanmi Koyejo¹ ²University of Science and Technology of China ¹Stanford University

Motivation & Introduction

Compound AI systems consist of multiple interacting AI components.

Examples: LLM + image generator; multi-agent systems.

 The example below shows GPT-4's inconsistent collaboration with DALL-E. User prompt: "Generate three separate images of a cat being progressively angrier."

(b) Slightly Irritated Cat

(d) Slightly Annoyed Cat

(e) Angry Cat

(f) Furious Cat

Open problems: aligning compound AI systems, due to

- 1. Non-differentiability: prevents end-to-end gradient optimization such as vanilla DPO and RLHF.
- 2. Credit assignment: the system's preference not easily decompose into individual component's preference.
- 3. Datasets: alignment datasets may exist for the system's overall task, but not for the sub-tasks of components.

Question

How to align compound AI systems in a principled way?

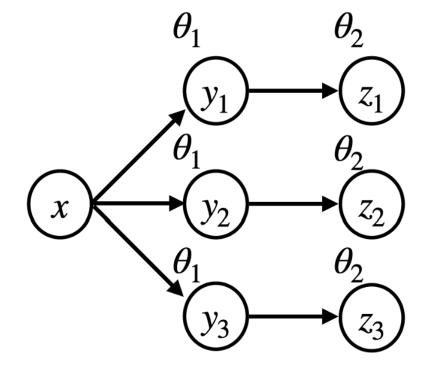
Contributions

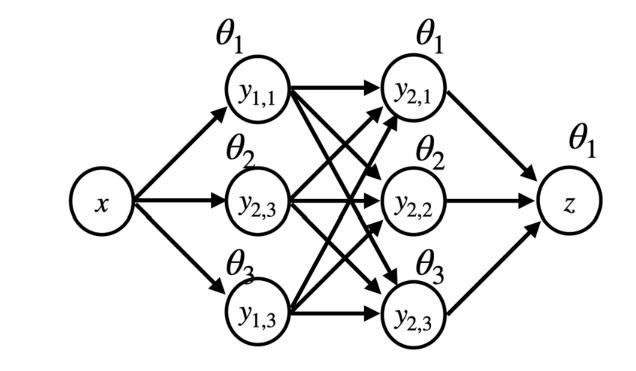
- Define the problem of alignment of compound Al system; propose the SysDPO Framework for solving it;
- Apply SysDPO to align a system of an LLM agent and a text-to-image diffusion model;
- Demonstrate that aligning compound AI systems increases the performance complex tasks.

Our work represents an initial step in forming a foundation for aligning compound AI systems as cohesive entities.

The SysDPO Framework

System Representation. We represent the compound Al system as a Directed Acyclic Graph (DAG). Node x is the input; y_i are intermediate outputs; z_i are final outputs.





- (a) LLM + Diffusion Models (b) Mixture-of-agents³
- **Probability Factorization.** The DAG structure encodes the conditional independence of the generated data. Denote $s = \{y_i, z_j\}_{i \in I, j \in I}$ as the set of all generated outputs.

$$p_{\theta}(s|x) = \prod_{i,j} p_{\theta_i}(y_i|parent(y_i)) \cdot p_{\theta_j}(z_j|parent(z_j))$$

- 3. Preference Dataset Construction. Given a query x, the system generates two versions of the responses: s^w , s^l .
- **4.** Loss Function Design. Given a dataset of (x, s^w, s^l) , an Al system formulated as a DAG, we can apply DPO:

$$L(\theta) = -\mathbb{E}\left[\log \sigma \left(\beta \log \frac{p_{\theta}(s^{w}|x)}{p_{\overline{\theta}}(s^{w}|x)} - \beta \log \frac{p_{\theta}(s^{l}|x)}{p_{\overline{\theta}}(s^{l}|x)}\right)\right],$$

where $\bar{\theta}$ is the reference model.

Application: LLM + Diffusion Model

Goal: apply SysDPO to a group-image-generation application (Figure (a)): an LLM ψ and a Diffusion Model ϕ .

Issue: the diffusion model does not directly provide the likelihood p_{ϕ} .

Method: to obtain a tractable loss function in this application, we prove the following theorem.

Theorem (Sketched)

$$L(\psi,\phi) \leq -\mathbb{E}\left[\log\sigma\left(\beta\left(A^{W}-A^{l}\right)\right)\right]$$
, where $A^{W} = \log\frac{p_{\psi}(y^{W}|x)}{p_{\overline{\psi}}(y^{W}|x)} + T\sum_{i}(-\ell_{\epsilon}(\phi;z_{i}^{W},y_{i}^{W}) + \ell_{\epsilon}(\overline{\phi};z_{i}^{W},y_{i}^{W}))$ similarly for A^{l} ; T is the num. of steps of the diffusion.

In the above, $\ell_{\epsilon}(\bar{\phi}; z_i^w, y_i^w)$) is the denoising loss function of the diffusion model.

Experiments

Task: multi-modal progression, where the system generates image sequences with a progressively changing attribute.

Dataset Construction:

- 1. 40 scene-related attributes (e.g., brightness, fog density) scored by a regressor.
- 2. GPT-4 generates 250 prompts for each attribute.
- 3. 6000 comparison pairs created by ranking generated sequences with the Preference Score (q).

Evaluation Metrics:

Preference Score (q): Measures ordering consistency and evenness of generated sequences.

Order Consistency Ratio: Evaluates how often sequences maintain the correct order.

Results:

Method	Preference Score	Order Consistency Ratio
SysDPO (Proposed)	0.25	70%
System Before Alignment	-0.20	32%
Best-of-4 Sampling	0.16	67%
Only Train Language Model	0.23	65%
Only Train Diffusion Model	-0.03	35%

Visual examples: Prompt — "I want to see a series of images of a lake as the ice increases." Before training:

After training:

The SysDPO approach significantly outperforms baselines, achieving the highest Preference Score (0.25) and Order Consistency Ratio (70%), demonstrating its ability to align compound AI systems effectively.