

Don't Just Demo, Teach Me the Principles: A Principle-Based Multi-Agent Prompting Strategy for Text Classification

Peipei Wei, Dimitris Dimitriadis, Yan Xu, Mingwei Shen Amazon

Introduction:

- In-Context Learning (ICL) & Finetuning:
 - As one of the emerging capabilities of large language models (LLMs), in-context learning (ICL) allows tasks to be performed via instructions and demonstrations without requiring parameter updates.
 - ICL excels in zero/few-shot settings for tasks such as QA, reasoning etc, but underperforms finetuned models in text classification.
- Challenges:
 - Fine-tuned models: Require costly, time-consuming human annotations.
 - ICL with LLM: Reliant on prompt engineering expertise, increased inference costs with demonstrations, and input length constraints.
- Human-Inspired Solution:
 - Hypothesis: Injecting **knowledge-intensive principles** into LLMs via ICL could bridge performance gaps in text classification.
- Propose mimicking Standard Operating Procedures (SOPs)—used by domain experts to extract task principles from examples—to enhance LLMs' task-specific knowledge. • Key Research Question: Can task-specific principles, derived from demonstrations, mitigate LLMs' lack of domain knowledge and improve performance in text classification?

Results:

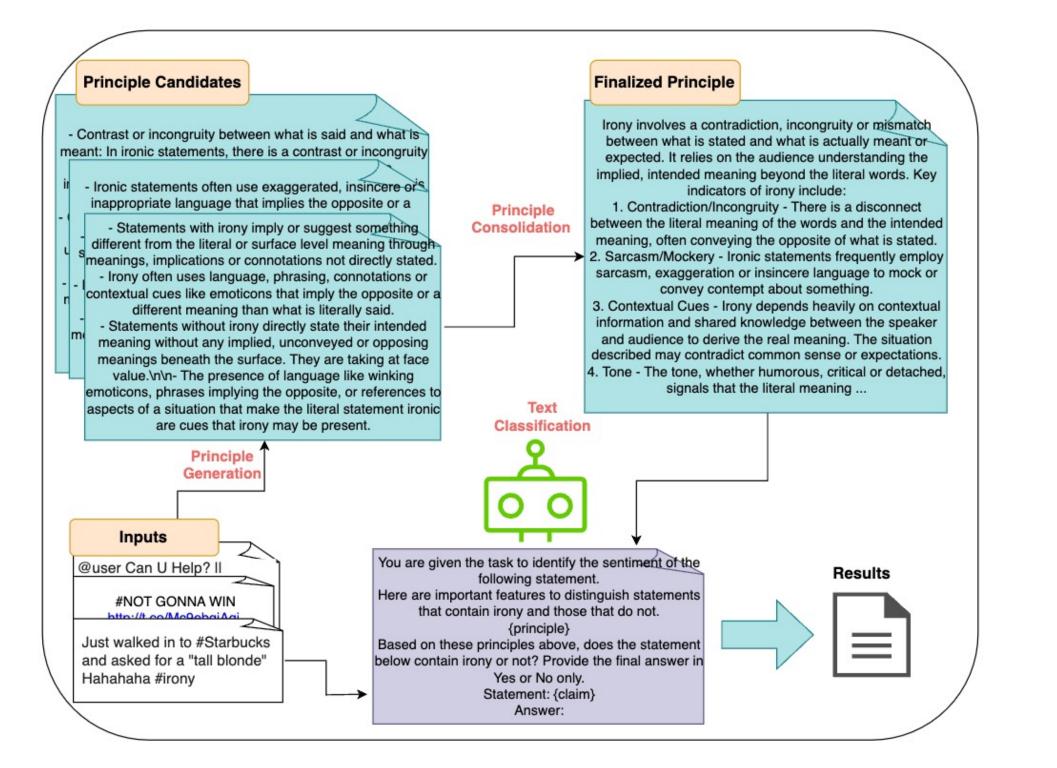
Table 1: Absolute improvements in the macro-F1 scores over the zero-shot vanilla prompting for various single- and multiagent approaches under the zero-shot settings. Human-crafted principles are only available for two private datasets. Results are averaged across five inferences with different random seeds.

Model	Method		Irony2018	Emotion20	Financial	PC1	PC2	AVG
flan-t5-xxl		СоТ	-9.31	-14.23	1.51	-1.56	17.25	-1.27
	single agent	stepback	-2.03	1.68	-3.31	1.36	17.56	3.05
		principle	2.62	8.13	3.40	1.40	12.89	5.69
		principle+human	NA	NA	NA	3.98	14.89	NA
	multi agent	principle+random	0.63	9.74	6.69	2.43	14.16	6.73
		principle + ranking	1.55	9.52	4.16	3.71	13.84	6.56
		principle+consolidation	0.45	12.13	4.38	1.43	16.21	6.92
flan-ul2	single agent	СоТ	-6.87	0.41	0.96	-0.58	13.46	1.48
		stepback	2.72	0.47	4.18	0.02	13.99	4.28
		principle	4.57	0.02	3.42	-0.2	13.03	4.17
		principle + human	NA	NA	NA	0.90	13.26	NA
	multi agent	principle+random	5.56	12.15	11.78	-0.54	19.08	9.61
		principle+ranking	4.96	11.14	11.05	1.57	18.69	9.48
		principle+consolidation	4.77	15.11	14.17	0.04	19.37	10.6
RoBERTa	full	finatuna	0.44	*17.62	*16.62	-5.26	-7.93	4.30
	10%	finetune	-19.71	-41.01	-52.41	NA	NA	NA

• Principle-Based Prompting vs. Baselines:

Methodology:

- Principle-Based Prompting Framework:
 - **Motivation:** Inspired by humans' use of abstract principles (vs. memorizing data) for classification tasks.



- Outperforms vanilla prompting, CoT, and stepback prompting in zero-shot settings for both FLAN-T5-XXL and FLAN-UL2.
- Achieves **10.69%** (FLAN-UL2) and **6.92%** (FLAN-T5-XXL) average gains over vanilla prompting across five datasets.
- Cost Efficiency: Single-agent principle approach matches stepback prompting performance with half the inference cost.
- Multi-Agent further boosts performance over single-agent
- Consolidation (cooperative) outperforms **ranking** (competitive) and **random selection** approaches
- Principle Quality Comparison:
 - LLM-generated principles matches or outperform human-crafted principles on private datasets
- Key Takeaway:
 - Principle-based ICL is a cost-effective alternative when labeled data is scarce.
 - Maintains zero-shot/few-shot efficiency (no fine-tuning) while closing the gap with supervised models.

Principle-based vs. Few-shot ICL:

- Principle-based approach achieves competitive or superior performance to few-shot ICL with shorter input tokens
- **Diminishing returns** with scaling the number of demonstrations
- Principle-based prompting offers a token-efficient alternative to traditional few-shot ICL, especially for long-context tasks

Table 2: Absolute improvements in the macro-F1 scores over the zero-shot vanilla prompting for the few-shot versus zero-shot principle-based approaches. Results are averaged across five inferences with different random seeds. n indicates the number of demonstrations per class. For PC1 and PC2, experiments were limited to $n \leq 2$ due to out-of-memory errors caused by long input token lengths.

Dataset	Model	n=1	n=2	n=4	n=8	multiagent principle consolidation
irony2018	flan-t5-xxl flan-ul2	0.62 3.63	0.08 3.08	0.06 3.64	0.68 3.66	0.45 4.77
emotion20	flan-t5-xxl flan-ul2	7.82 0.94	4.17 1.28	1.92 0.32	2.58 0.92	12.13 15.11

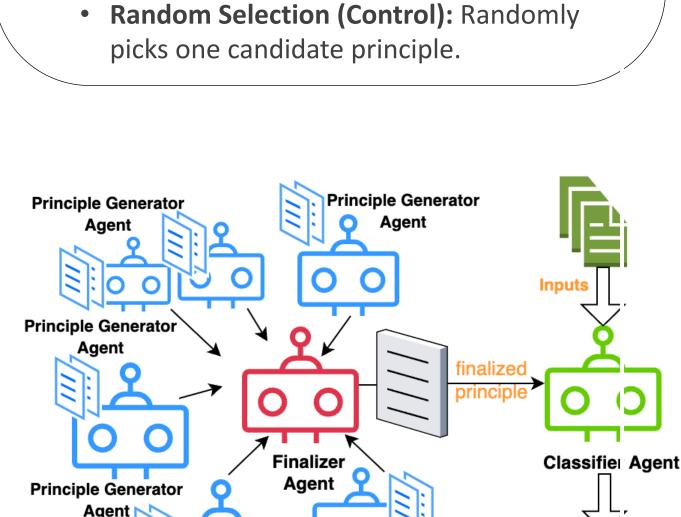
• Three-Step Workflow:

Step 1. Principle Generation

- **Process**:
 - LLMs analyze **n** = [4, 8, **16]** labeled/unlabeled demonstrations to generate task-level principles.
- Models:
 - Tested 6 LLMs (open/closed-source, varying sizes);
- **Output:** 36 candidate principles per task (varying n, label use, and LLM agents).

Step 3. Text Classification

- Process:
 - Optimal principle appended to prompts as context for classification.
 - Tested on FLAN-T5-XXL and FLAN-UL2
- Setup:
 - 5 random seeds; same hyperparameters
 - Also evaluated on internal datasets with human-vs-LLM-generated principles.



Principle Generator Agent

Final Results

Step 2. Principle Consolidation

• LLM agents rank top 5 principles;

majority voting selects the final

• Tested with randomized order and

different number of demonstrations

• Summarizes and integrates key points

from all 36 candidates, resolving

• Listwise Ranking:

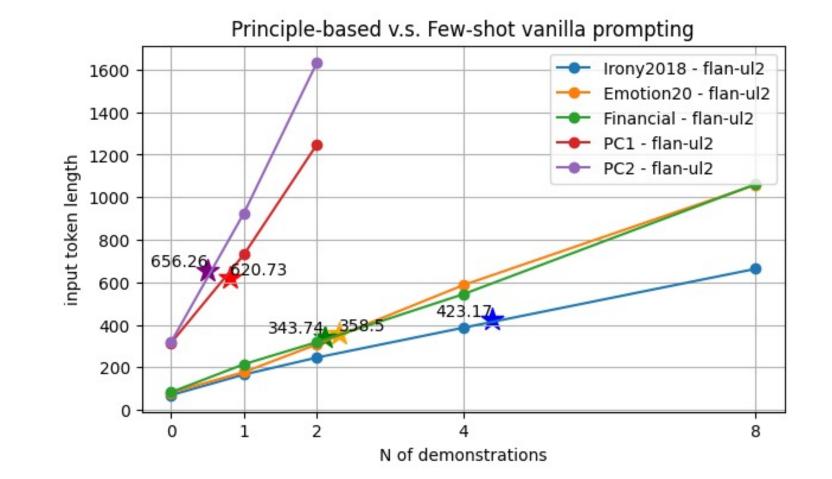
principle.

Consolidation:

conflicts.

• Methods:

financial	flan-t5-xxl	1.57	2.26	2.28	2.70	4.38
	flan-ul2	8.22	10.42	11.49	11.32	14.17
PC1	flan-t5-xxl	0.22	1.49	NA	NA	1.43
	flan-ul2	0.59	0.47	NA	NA	0.04
PC2	flan-t5-xxl	17.36	17.31	NA	NA	16.21
	flan-ul2	16.98	17.41	NA	NA	19.37



Future Work:

- Methodological Extensions:
- Integration with RAG
- **Multi-Label Classification:** e.g., generate per-class principles + retrieval for top-k candidates
- Hybrid Approaches: pairing principles with example-based explanations to boost performance.
- Model & Application Expansion:
- Black-Box LLMs: Test scalability with models like GPT-4 to assess broader applicability.
- **SOP Automation:** Extend the multi-agent framework to auto-generate **domain-specific SOPs** (e.g., legal, medical) from minimal examples.
- **Beyond Classification:** Apply principle-based approach to **generation tasks** (e.g., summarization, QA) requiring structured reasoning.

AAAI 2025 Workshop on Advancing LLM-Based Multi-Agent Collaboration

*Corresponding author: peipeiw@amazon.com