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Abstract

Large language models (LLMs) demonstrate strong reason-
ing capabilities yet often exhibit inconsistency and variability
in multi-step or high-stakes tasks, limiting their dependability
in autonomous problem solving. To mitigate these challenges,
we introduce a multi-agent reinforcement learning (MARL)
framework that fosters collaborative reasoning among mul-
tiple LLM agents through adaptive strategy selection and
reward-guided policy optimization. Within this framework, a
Graph Attention Network facilitates strategy selection, while
a dynamic trust model prioritizes contributions from reliable
agents, promoting both coordination and reasoning diver-
sity. Experimental evaluations on mathematical and scientific
reasoning benchmarks reveal substantial performance gains,
particularly for smaller models. On GSM-1k, Llama-3.1:8B
improves from 65.37% individual to 83.33% consensus ac-
curacy, marking a +17.96% relative gain, while GPT-4.1-
nano achieves a +9.54% improvement. Even stronger models
such as GPT-4.1-mini exhibit consistent yet moderate boosts
across datasets. The findings highlight the effectiveness of
trust-aware, reinforcement-driven collaboration in enhancing
the accuracy, stability, and robustness of LLM-based reason-
ing systems.

1 Introduction

Large language models (LLMs) have demonstrated remark-
able capabilities in reasoning, question answering, and
knowledge-intensive tasks. However, individual models of-
ten exhibit variability in performance due to inherent biases,
limited expertise in specific domains, or uncertainty in diffi-
cult problems. To address these limitations, multi-agent sys-
tems offer a promising approach by combining the strengths
of multiple agents, each contributing complementary rea-
soning capabilities.

A parallel line of research has explored prompt engi-
neering as a resource-efficient approach to enhance reason-
ing in large language models (LLMs). By embedding task
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descriptions or exemplars directly into the input, prompt-
ing enables models to perform diverse tasks without re-
training or fine-tuning. Techniques such as zero-shot and
few-shot prompting, and reasoning-oriented strategies like
Chain-of-Thought (CoT) (Wei et al. 2023; Tutunov et al.
2024; Besta et al. 2024), improve reasoning by making
intermediate thought steps explicit. Extensions including
Self-Consistency (CoT-SC) (Wang et al. 2023), which ag-
gregates multiple reasoning paths; Self-Ask (Press et al.
2023), which introduces follow-up questioning; Decomposi-
tion (Patel et al. 2022), which structures problems into sub-
tasks; and Least-to-Most (Zhou et al. 2023), which solves
simpler components sequentially, further expand reason-
ing capabilities. However, these methods still rely on static
prompt formats and lack adaptability to dynamic or multi-
agent reasoning contexts, motivating the need for more flex-
ible and adaptive frameworks.

In this work, we propose MARL-GAT (Multi Agent Re-
inforcement Learning-Graph Attention Network), a trust-
aware multi-agent reasoning framework that integrates
reinforcement learning with Graph Attention Networks
(GATs) (Velickovié et al. 2018) to enable adaptive, reliable
coordination among language model agents. The system dy-
namically models trust relationships by maintaining a trust
matrix that evolves based on historical performance and re-
liability. While the GAT processes graph connectivity to en-
able collaborative reasoning, trust relationships are incor-
porated through the consensus mechanism, which assigns
higher weights to more trustworthy agents based on their
historical performance. This allows the system to prioritize
contributions from more reliable agents while still incorpo-
rating insights from all agents in the final decision-making
process. Reinforcement learning optimizes strategy selec-
tion across the network, ensuring that agents choose reason-
ing strategies based on their policies.

We evaluate the framework across benchmark datasets us-
ing GPT-based models (OpenAl 2023), including GPT-4.1-
mini and GPT-4.1-nano, and observe consistent improve-
ments under trust-aware consensus aggregation. Smaller
models such as Llama-3.1:8B (Grattafiori et al. 2024) show



the largest relative gains, demonstrating that our method par-
ticularly benefit weaker systems by correcting individual er-
rors and enhancing collective reliability. These results con-
firm that the proposed architecture delivers robust reasoning
outcomes across both larger and smaller models (Table 1).
In this work, we make the following key contributions:

* We apply trust-aware multi-agent reinforcement learning
framework that enables collaborative reasoning among
multiple LLM agents, enhanced with a Graph Attention
Network to model trust and prioritize reliable contribu-
tions.

e We introduce adaptive strategy selection and reward
mechanisms that balance individual performance, con-
sensus alignment, and diverse reasoning approaches to
enhance decision-making and exploration.

e Our method improves collaboration, leading to steady
gains in consensus accuracy across different model sizes
and benchmarks, demonstrating its effectiveness regard-
less of the underlying model architecture.

2 Related Works

Graph Neural Networks (GNNs) provide a framework for
learning over graph-structured data, enabling agents or
nodes to exchange information with neighbors (Scarselli
et al. 2009). Among these, Graph Attention Networks
(GATs) (Velickovi¢ et al. 2018) introduce self-attention
mechanisms to assign different weights to neighboring
nodes, allowing more reliable or informative agents to exert
greater influence. Unlike spectral-based GNNs, GATs avoid
costly matrix operations and are naturally applicable to in-
ductive settings. GATs have achieved state-of-the-art results
across transductive and inductive benchmarks, including ci-
tation networks such as Cora, Citeseer, and Pubmed, as well
as protein-protein interaction networks where test graphs are
unseen during training. By integrating GATs into MARL
frameworks, it becomes possible to model trust and dynam-
ically adjust agent influence, leading to more robust consen-
sus and collaborative reasoning.

Consensus-based aggregation has been widely studied
as a means to improve collective decision-making. Tra-
ditional approaches, such as majority voting or weighted
voting, combine agent outputs to enhance overall accu-
racy (Zhang, Yang, and Bagar 2021). Recent works incorpo-
rate agent reliability, performance history, or network struc-
ture to weigh contributions dynamically. For instance, re-
inforcement learning-based trusted consensus mechanisms
enable agents to independently decide which neighbors to
communicate with, effectively handling unreliable agents
and improving consensus success rates (Fung et al. 2024).
In the context of large language model (LLM) agents, trust-
aware consensus mechanisms further improve reasoning ro-
bustness by prioritizing reliable agents while preserving di-
versity, effectively mitigating errors from individual models
with lower confidence or expertise.

Multi-agent systems powered by large language models
(LLMs) have recently emerged as a promising paradigm
for complex reasoning and simulation tasks. For instance,

LLMs can replace traditional agent programs in simula-
tions such as ant colony foraging or bird flocking, enabling
more flexible and adaptive coordination (Jimenez-Romero,
Yegenoglu, and Blum 2025). (Jia et al. 2025) and (Wan et al.
2025) further explore graph-based MARL settings in which
a central node decomposes a task into sub-tasks that neigh-
boring agents solve independently, and (Jia et al. 2025) also
highlights the role of intrinsic and extrinsic rewards in shap-
ing agent behavior.

3 Dataset

To evaluate both mathematical and scientific reasoning, we
employ three complementary benchmark datasets: ARC-
Challenge, GSMS8K, and GSM1k.

The ARC-Challenge dataset (Clark et al. 2018) consists
of grade-school science questions designed to assess rea-
soning beyond factual recall. These questions span multiple
reasoning types, such as causal, comparative, and hypothet-
ical reasoning, making the dataset well-suited for evaluating
scientific and commonsense inference capabilities. For this
benchmark, 200 questions from the training split are used for
model optimization, and evaluation is performed on 300 ran-
domly sampled test questions to ensure representative per-
formance assessment.

For mathematical reasoning, we use the GSM8k dataset
(Cobbe et al. 2021), a collection of grade-school mathe-
matical word problems with detailed step-by-step solutions.
GSMSk spans arithmetic, algebra, and multi-step reasoning,
providing a rich source of structured examples for supervi-
sion.

We evaluate generalization on GSM1k (Zhang et al.
2024), a held-out test set designed to mirror the style of
GSM8k while containing entirely new problem instances.
To prevent data contamination and reduce overfitting, we
avoid using GSM 1k during training. Instead, our training set
consists of 200 problems randomly sampled from GSMS8K,
ensuring that the model learns general reasoning patterns
rather than memorizing benchmark questions.

Overall, this dataset suite offers balanced coverage across
reasoning domains: ARC-Challenge for scientific and com-
monsense reasoning, GSM8k for structured mathematical
problem-solving, and GSM1k for generalization to unseen
math problems. We selected these benchmarks because they
provide precise, unambiguous ground-truth answers, allow-
ing reward signals to remain noise-free and directly com-
putable. Since all problems come with well-defined solu-
tions, evaluation does not rely on subjective human judg-
ment, enabling our MARL framework to operate with per-
fectly accurate rewards and supporting a clean, interference-
free assessment of reasoning performance

4 Methodology

The architecture of the proposed multi-agent reasoning
framework, depicted in Figure 1, delineates the end-to-
end reasoning pipeline from input embedding to consensus-
based answer synthesis. In the initial phase of the reasoning
pipeline, input questions are converted into dense embed-
dings that encapsulate their semantic representations. These



Node Features

GAT Layers x 2

GATConv
Concatenate
ELU Activation

Dropout

)

N

Consensus Formation

Combine Agent Answers

{ ™

Training Mode?

N\

Yes No
v v

Answer Evaluation Final Output

Reward Calculation

!

Update Policies &
Trust Matrix

Questions

Question Embedding
(768-dim)

v

Linear Layer

Agent 0 GAT

GAT Networks (N Agents)

Agent 1 GAT Agent N - 1 GAT

Strategy Selection

T

Stochastic Sampling Deterministic

Softmax

(Training)

S

Selected Strategy

(Inference)

()

\

LLM Call

Question + Selected

Strategy
LLM Generation

|

Generated Answer

(b)

Figure 1: Overview of the MARL-GAT framework. (a) GAT-based policy network for reasoning strategy selection. (b) End-to-
end processing workflow illustrating multi-agent reasoning and strategy coordination.

embeddings guide the selection of reasoning strategies, de-
termining how the task should be allocated and approached
by the agents. The question is first analyzed to determine
an appropriate strategy, after which it is distributed across
multiple agents, each utilizing its associated large language
model (LLM) to generate a candidate answer. The collection
of answers from the agents is then processed by a consensus

mechanism, which aggregates the responses to derive a uni-
fied output.

The consensus stage also serves a dual purpose by inform-
ing the computation of rewards, which measures the quality
and reliability of individual agent contributions. These re-
wards feed into the policy and trust update component, en-
abling the system to iteratively adjust its internal models of



agent reliability and effectiveness. This adaptive update di-
rectly influences subsequent strategy selection, closing the
feedback loop that governs system improvement over time.
Ultimately, the consensus-driven result is released as the
system output, representing the collective reasoning of the
agents.

4.1 Setup

The multi-agent system initialization involves four key com-
ponents: the N-agent architecture, GAT policy networks,
strategy effectiveness tracking, and trust matrix setup.

Multi-Agent Architecture The system initializes N au-
tonomous agents, where N represents the total number of
agents. Each agent ¢ € {0,1,..., N — 1} has an indepen-
dent GAT-based policy network 7;(+) (where 7; is the policy
function for agent ¢) and an experience memory buffer that
stores state—action-reward tuples (s, a, r). Each agent main-
tains a separate Adam optimizer instance, all initialized us-
ing the same learning rate a.

GAT Policy Network Agents communicate over a small-
world graph G = (V, E) (Watts and Strogatz 1998) with
initial degree k, rewiring probability p, and dynamic evolu-
tion constrained by minimum and maximum agent degrees.
Each agent uses a Graph Attention Network (GAT) policy
with input dimension d;,,, hidden dimension dp;4qen, b at-
tention heads, and output dimension d,,; corresponding to
reasoning strategies. The architecture comprises two GAT
layers followed by a softmax output:

7 = (W - GAT,(GAT, (X, E), E)) (1

where X is the node feature matrix, E is the edge index
tensor, W is the output weight matrix, and 7 is the logits ob-
tained from policy network. The GAT layers operate on the
node feature matrix X and edge index tensor E to produce
node embeddings. These embeddings are passed through a
fully connected layer parameterized by the weight matrix
‘W, which outputs the raw logits corresponding to the avail-
able reasoning strategies.

Strategy Effectiveness Tracking The system tracks ef-
fectiveness for the provided reasoning strategies (Expained
later in Section 4.8). Scores are updated via exponential
moving average with o« (EMA smoothing factor).

Trust Matrix The trust matrix T € RN*YN (where T
represents inter-agent trust relationships) is initialized with
T; ; = 0.5 for connected agents (where T ; is the trust from
agent ¢ to agent j) and T; ; = O (no self-trust). Trust evolves
through symmetric updates between agent pairs, where trust
changes are calculated using case-specific base rates with
diminishing returns factors that reduce update magnitude as
trust levels increase. Updates are applied bidirectionally be-
tween connected agents based on their individual correct-
ness relative to the group consensus.

4.2 Question Embedding

We generate 768-dimensional question embeddings us-
ing the all-mpnet-base-v2 Sentence Transformer model

(Reimers and Gurevych 2019) to capture their semantic con-
tent. These embeddings serve as shared inputs for all agents
in the multi-agent system and are used both by the policy
network for strategy selection and for clustering semanti-
cally similar questions to update the strategy effectiveness
tracker.

4.3 Cosine Similarity for Adaptive Strategy
Selection

While the mechanisms above capture graph-structured rea-
soning preferences and the diversity of strategies across
questions, further refinement is achieved by incorporating
semantic similarity between them. Cosine similarity is used
to compare the embedding of the current question with those
of previously encountered questions, allowing the system to
identify semantically related cases. Historical effectiveness
scores from these similar questions are then aggregated us-
ing a weighted scheme in which closer matches exert greater
influence, thereby refining the bias term that is added to the
raw logits generated by the GAT. This integration enables
the strategy selection process to benefit not only from neural
inference and strategy diversity, but also from accumulated
experience on related problem types. When no sufficiently
similar questions are found, the system defaults to neutral
effectiveness estimates, ensuring robustness even in scenar-
ios involving novel or out-of-distribution inputs.

4.4 Strategy Selection

The strategy selection process begins by encoding each
question into a dense embedding that is broadcast to all
participating agents. Although each agent receives the same
question representation, their decision-making diverges due
to differences in their positions within the communication
graph and the local attention dynamics of the GAT. Each
agent’s policy network employs multi-head attention to ag-
gregate contextual signals from neighboring nodes, refining
its internal representation of the question based on local de-
pendencies and trust-weighted connections.

From the GAT policy network, raw logits over available
reasoning strategies are produced and subsequently refined
using a strategy effectiveness tracker. This tracker intro-
duces a bias toward strategies that have historically yielded
higher success rates on similar questions, promoting the
reuse of empirically strong approaches. The bias term is
added to the raw logits (prior to softmax normalization)
and weighted by a tunable coefficient to balance explo-
ration and exploitation. The final strategy for each agent is
then sampled from a categorical distribution derived from
the adjusted logits, ensuring that while all agents begin
from the same question embedding, their ultimate strategy
choices remain diverse and informed by both structural and
performance-based signals.

Formally, the probability of selecting a strategy is given
by

P(strategy) = softmax (GAToutput + v x Sgt()l) 2)

where 7y is a tunable parameter controlling the influence
of the effectiveness bias S. §t; as described in Section 4.8.



4.5 LLM Inference

After an agent selects a reasoning strategy through the com-
bined GAT policy network and strategy tracker, the frame-
work retrieves the corresponding prompt and queries an
LLM to produce the final answer. The process involves
prompt selection, model inference, and answer extraction.
Each strategy uses a distinct prompt template tailored to
elicit its specific reasoning behavior. Model inference em-
ploys both private and local LLMs: GPT-4.1-mini and GPT-
4.1-nano via OpenAl API (OpenAl 2023), and a locally
hosted 4-bit quantized LLaMA 3.1-8B model (Grattafiori
et al. 2024).

4.6 Consensus

Our multi-agent system employs a weighted consensus
mechanism to aggregate agent responses into a collective
decision. This mechanism incorporates agent trust to deter-
mine each agent’s influence on the final outcome, while also
guiding reward assignment and trust updates. Agents with
higher trust naturally exert greater influence during consen-
sus, yet contributions from lower-trust agents are never dis-
carded, ensuring that diverse reasoning signals remain part
of the decision-making process and allowing previously un-
reliable agents the opportunity to recover
Each agent ¢ is assigned a weight defined as:

1
Wagent = T Z Tija (3)

where N; = {j | T;; > 0, j # i} denotes the set of agents
trusted by agent 1.

For each candidate answer, the total score is computed as
the sum of weights of agents selecting that answer:

Sanswer = Z Wagent 4

agent€ Pynswer

The final consensus is determined by applying a softmax
function over these scores to produce a probability distribu-
tion:

€XP ( Sansweri )

Z eXp(Sanswerj )
J

P(answer;) =

&)

where P, swer denotes the set of agents choosing that
answer. The answer with the highest probability is selected
as the consensus answer, and the corresponding probability
serves as a confidence measure.

This consensus mechanism ensures that agents with
higher trust have greater influence, while still allowing col-
lective input from all agents. The resulting probabilities
not only provide the final decision but also enable uncer-
tainty quantification, which can inform downstream pro-
cesses such as reward assignment, performance tracking,
and trust updates between agents.

4.7 Rewards

The reward mechanism forms the core feedback signal driv-
ing the learning dynamics of the MARL-GAT framework. In
this study, each agent is trained to optimize its reasoning per-
formance through an individual reward scheme, where rein-
forcement is determined solely by the correctness of its gen-
erated output. This direct and interpretable signal encour-
ages agents to focus on producing accurate solutions rather
than relying on external or consensus-based influences. The
reward function is formally defined as:

+1.0, if correct,
—0.5, ifincorrect.

Rindividual = { (6)

This formulation provides a clear learning objective for
each agent, reinforcing correct reasoning traces while pe-
nalizing deviations that lead to incorrect conclusions. By
restricting the feedback to an individual level, the learning
process remains interpretable and avoids potential instabil-
ity introduced by inter-agent dependencies. This design al-
lows each policy to evolve independently, ensuring that the
improvement in reasoning accuracy arises from the agent’s
own adaptive behavior rather than collective bias.

During training, the individual reward directly modulates
the policy gradient updates through the GAT policy network,
influencing strategy selection probabilities and decision-
making patterns. As training progresses, the reward-driven
updates enable agents to refine their strategy preferences and
progressively align their reasoning approaches with ground-
truth solutions. This mechanism forms the foundation upon
which the overall MARL-GAT learning pipeline operates,
supporting consistent and reproducible improvement across
multiple reasoning benchmarks.

4.8 Updates

The multi-agent system employs multiple update mecha-
nisms that drive learning and adaptation across different
timescales. After a series of interactions, individual rewards
are calculated, strategy effectiveness scores are updated
based on performance, and trust relationships are adjusted
between agents. Policy gradient updates refine agent strate-
gies based on accumulated rewards, while graph structure
evolution adapts the communication topology according to
trust patterns. This multi-scale approach ensures that both
immediate correctness signals and long-term performance
patterns are incorporated into the evolution of agent poli-
cies, strategy evaluations, and trust relationships. Figure 2
illustrates how these processes interact with the [V-agent ar-
chitecture through the centralized consensus mechanism.

After all agents provide their answers and the consensus
mechanism determines the final decision, three complemen-
tary update processes are triggered.

GAT Policy Updates Each agent’s GAT policy is updated
using the REINFORCE algorithm (Williams 1992), priori-
tizing simplicity. Individual rewards are assigned based on
answer correctness, as described in Section 4.7. The stored
log probabilities are combined with the reward signals to
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Figure 2: Multi-agent system update architecture showing N
agents feeding into a consensus block, which triggers three
parallel update processes: GAT policy updates, strategy ef-
fectiveness updates, and trust matrix updates.

compute policy gradients, which are then applied to up-
date the network parameters. In this way, each agent gradu-
ally adapts its decision-making policy to maximize expected
long-term reward.

Strategy Effectiveness Updates In addition to individ-
ual policy adaptation, the system maintains a single global
tracker that records the effectiveness of each reasoning strat-
egy using question embedding similarity. This tracker is up-
dated using an exponential moving average controlled by a
smoothing factor «, allowing both stability and adaptability.

S =(1-a)SN +a-clt) 7)

$,q

where S, denotes the effectiveness score for strategy s
on question embedding ¢ at time ¢, and c@q is the binary
correctness indicator (1 if correct, O if incorrect). When se-
lecting strategies, agents query this shared knowledge base
using cosine similarity to find historically effective strate-
gies for similar questions, enabling them to exploit collec-
tive learning patterns.

Trust Matrix Update Mechanisms Beyond local learn-
ing and global strategy evaluation, the system maintains a
dynamic trust network that governs the strength of con-
nections between agents. Trust values evolve continuously
based on both immediate correctness signals and longer-
term performance outcomes, ensuring that collaboration pat-
terns reflect reliability.

Answer-Based Trust Updates: After each question, the
trust between every pair of agents is updated according to
their correctness outcomes. If both agents are correct (TT),
their mutual trust increases by a base amount d, with di-
minishing returns applied as trust values approach the up-
per bound. If one agent is correct and the other is incor-
rect (TF or FT), trust decreases symmetrically by a smaller
amount Jdp, reflecting divergent reliability. If both are in-
correct (FF), trust decreases by the largest penalty dp, dis-
couraging the reinforcement of shared mistakes. Trust val-
ues are bounded between predefined minimum and maxi-
mum thresholds to prevent extreme values. All updates are
applied symmetrically, such that for agents ¢ and j, trust is
updated as T;; <> TY;. This symmetric update mechanism
ensures that trust relationships evolve based on consistent

performance patterns while maintaining balanced influence
between agents over time.

Graph Structure Evolution: At fixed intervals, the un-
derlying graph structure is adapted to reflect the evolving
trust distribution. This structural evolution proceeds in four
stages:

1. Low-trust connections (< 0.3) are removed to prevent
reinforcement of unreliable links.

2. High-trust connections (> 0.8) are added to strengthen
collaboration between reliable agents.

3. Minimum connectivity is enforced to avoid agent isola-
tion.

4. Existing links are rebalanced by replacing lower-trust
connections with higher-trust ones to better reflect the
current trust distribution

This structural plasticity allows the network topology
itself to emphasize meaningful collaboration pathways.

Trust Matrix Synchronization: Whenever the graph
structure changes, the trust matrix is immediately synchro-
nized to ensure numerical consistency with the updated con-
nectivity. This guarantees coherence between the structural
and quantitative representations of trust.

Overall Flow and Properties: Together, these mecha-
nisms create a layered update process: answer-based trust
updates occur after every question, graph structure evolution
takes place periodically, and trust matrix synchronization
ensures structural alignment. The resulting trust network is
characterized by symmetry (trust; ; = trust; ;), bounded-
ness (0.1 < trust < 0.95), diminishing returns at higher
trust levels, and strong performance-dependence. Moreover,
its structure-aware adaptation guarantees that graph topol-
ogy evolves in tandem with agent reliability, producing a
trust network that is both resilient and aligned with collec-
tive effectiveness.

5 Results
5.1 Benchmark Performance

We evaluate our method on two benchmarks: ARC-
Challenge, testing scientific and commonsense reasoning,
and GSMIKk, focusing on step-by-step mathematical prob-
lem solving. Table 1 summarizes zero-shot, individual agent,
and consensus accuracies, with the “Improvement” column
quantifying the benefits of consensus aggregation. Across
both benchmarks, consensus consistently enhances perfor-
mance, reducing individual variability and stabilizing pre-
dictions.

On ARC-Challenge, consensus provides moderate gains.
GPT-4.1-mini improves from 95.17% to 97.00% (+1.83%),
GPT-4.1-nano rises from 88.80% to 92.00% (+3.20%), and
LLaMA-3.1 8B jumps from 79.20% to 86.00% (+6.80%).
These results indicate that for scientific and commonsense
reasoning, consensus acts primarily as a stabilizer.

For GSMI1K, consensus has a stronger effect in numer-
ical reasoning. GPT-4.1-mini improves from 90.73% to
94.00% (+3.27%), GPT-4.1-nano from 83.13% to 92.67 %
(+9.54%), and LLaMA-3.1 8B from 65.37% to 83.33%



Model Zero-Shot Individual Accuracy Consensus Accuracy Improvement
ARC-Challenge
GPT-4.1-mini 94.33% 95.17% 97.00% +1.83%
GPT-4.1-nano  91.67% 88.80% 92.00 % +3.20%
Llama-3.1:8B 84.67% 79.20% 86.00% +6.80 %
GSM-1k
GPT-4.1-mini 93.33% 90.73% 94.00% +3.27%
GPT-4.1-nano  90.00% 83.13% 92.67 % +9.54%
Llama-3.1:8B 77.33% 65.37% 83.33% +17.96 %

Table 1: Performance comparison of different models on individual and consensus accuracy across datasets.

Learning Individual Consensus
Paradigm Accuracy  Accuracy
Supervised Learning 83.06% 92.00%
Reinforcement Learning 83.13% 92.67 %

Table 2: Comparison of Supervised Learning and Reinforce-
ment Learning on GSM 1K using GPT-4.1-nano.

(+17.96%). This demonstrates that collaborative decision-
making is particularly effective in error-prone domains, cor-
recting individual mistakes and substantially enhancing reli-
ability.

Consensus improves accuracy across zero-shot outputs,
with moderate gains for strong models and substantial im-
provements for weaker or error-prone models. Practical con-
siderations, such as parsing outputs only within <answer>
tags, may slightly affect measured accuracy. Overall, rein-
forcement learning enables adaptive coordination, and the
GAT framework ensures trust-aware consensus, together de-
livering measurable gains in accuracy, robustness, and sta-
bility across diverse reasoning tasks.

5.2 Ablation Study

Reinforcement vs. Supervised Learning To evaluate the
impact of the learning paradigm on agent coordination and
reasoning performance, we conducted ablation studies on
the GSMIK dataset using GPT-4.1-nano as the underly-
ing language model. In the Supervised Learning (SL) set-
ting, agents are trained to predict correct answers by com-
paring the consensus-derived output with the ground truth
from the dataset, optimizing for immediate accuracy. In the
Reinforcement Learning (RL) setting, agents learn policies
through reward-driven feedback, adapting strategies based
on individual correctness and interactions with other agents
over multiple episodes. The comparison isolates the effect of
the learning paradigm while keeping all other experimental
conditions identical.

The results indicate that RL improves both individual
accuracy (83.13% vs. 83.06%) and consensus accuracy
(92.67% vs. 92.00%), suggesting that reward-driven adap-
tation enhances coordination and collective reasoning even
under similar base conditions. Considering the expense of
GPT-based API calls and the more gains from RL, we
adopted the RL paradigm for subsequent experiments, bal-
ancing performance improvement with cost-efficiency.

Consensus-Aware Reward Integration To evaluate the
impact of collaborative feedback on agent performance, we
introduce a consensus-aware reward enhancement that ex-
tends the baseline individual reward formulation. Unlike the
purely correctness-based scheme used in the main model,
this approach adjusts rewards based on agreement patterns
among agents, aiming to promote both independence and
coordinated reasoning.
Formally, the final reward for each agent is defined as:

Rinodified = Rindividual + AR, (®)
where,
+47, if consensus is incorrect
and agent is correct,
-0, if consensus is incorrect
AR = and agent is incorrect,

+gmimer - if consensus is correct
and agent is in the correct minority,

0, otherwise.
©))

To examine the impact of consensus-sensitive reward
modifications, we compare performance under the stan-
dard individual reward mechanism (base reward) with the
previously proposed consensus-aware reward scheme. The
consensus-aware reward adjusts agent feedback based on
alignment with group consensus, rewarding agents who are
correct despite an incorrect consensus, penalizing agents
who incorrectly conform, and giving minor incentives to
correct minority contributors.

Table 3 summarizes consensus accuracy for both reward
strategies across the ARC-Challenge and GSM-1k bench-
marks. For each model, consensus performance is shown un-
der base rewards versus consensus-aware rewards.

The results indicate that, across both benchmarks, the
base individual rewards generally achieve higher consensus
accuracy than the consensus-aware modifications. While the
consensus-aware reward was designed to encourage align-
ment and independent correctness, in practice, it introduces
slight constraints that can reduce performance in determin-
istic or low-ambiguity tasks. The ablation highlights that,
for these reasoning benchmarks, simpler base rewards are
sufficient to guide agents effectively, providing more sta-
ble consensus outcomes without the additional complexity
of consensus-sensitive adjustments.



Model Base Reward Consensus-Aware

Reward
ARC-Challenge

GPT-4.1-mini 97.00% 96.33%

GPT-4.1-nano 92.00% 92.33%

Llama-3.1:8B 86.00% 86.00%

GSM-1k

GPT-4.1-mini 94.00 % 93.67%

GPT-4.1-nano 92.67 % 92.00%

Llama-3.1:8B 83.33% 82.67%

Table 3: Consensus Accuracy Comparison: with Base re-
wards and Consensus-Aware Reward.

Strategy Consensus Individual
Weight () Accuracy (%) Accuracy (%)
0.0 89.67 67.16
0.1 92.67 83.13
0.7 90.33 87.46

Table 4: Impact of Strategy Effectiveness Weight on
GSMI1K Performance using GPT-4.1-nano.

Strategy Effectiveness Bias Analysis To evaluate the im-
pact of historical strategy performance on agent decision-
making, we conducted ablation studies on the GSMI1K
dataset using GPT-4.1-nano as the underlying language
model. The effectiveness bias was applied to the raw log-
its from the GAT policy network, where v = 0.0 represents
pure model-based strategy selection without historical guid-
ance, and higher values indicate stronger reliance on empir-
ically successful strategies.

Table 4 summarizes the results. At v = 0.0, the sys-
tem achieved a consensus accuracy of 89.67% and indi-
vidual agent accuracy of 67.16%, reflecting limited coor-
dination due to the absence of historical feedback. Intro-
ducing a moderate effectiveness bias of v = 0.1 led to
the highest consensus accuracy of 92.67 %, while maintain-
ing a strong individual accuracy of 83.13%. In contrast, a
high bias value of v = 0.7 produced the best individual ac-
curacy of 87.46%, but resulted in a lower consensus per-
formance (90.33%), likely due to premature convergence
on dominant strategies and reduced exploratory behavior.
These findings suggest that moderate historical guidance
(specifically v = 0.1) provides the best trade-off between
strategy diversity and consensus reliability.

6 Future Enhancements

Future work will focus on enhancing the scalability, adapt-
ability, and strategy learning of MARL-GAT. The graph
could dynamically adjust its size based on question com-
plexity, and agents could generate or refine strategies in-
formed by prior performance. Cross-domain transfer of trust
patterns and strategy effectiveness could reduce retraining
needs.

Integrating heterogeneous LLM agents of varying sizes,
architectures, or expertise can improve consensus by com-

bining complementary strengths and mitigating correlated
errors, with dynamic assignment based on historical reliabil-
ity. Hierarchical attention mechanisms and dynamic strategy
creation could further enhance adaptability to novel tasks.

Advances in trust modeling, considering reasoning qual-
ity, explanation clarity, and efficiency, along with tempo-
ral tracking and adaptive thresholds, can guide collective
decisions more effectively. These directions aim to make
MARL-GAT more scalable, interpretable, and robust for
complex multi-agent reasoning tasks.

7 Discussion and Conclusion

Our MARL-GAT system demonstrates the effectiveness of
combining multi-agent coordination with graph-based trust
networks for complex reasoning tasks. Consistent gains in
consensus accuracy over individual agents confirm that col-
laborative reasoning through dynamic trust relationships
enhances problem-solving capabilities. The trust network
evolves from random initialization to an optimized structure,
showing agents learn to maintain connections with high-
performing collaborators.

Our framework shows consistent improvements across
benchmarks and model sizes. On GSM 1K benchmark , GPT-
4.1-mini achieves 94%, surpassing GPT-4o0 (92.9%) and
GPT-4 (92.3%), while GPT-4.1-nano reaches 92.67%, and
LLaMA-3.1 8B improves from 69.0% to 83.33% (Zhang
et al. 2024). On the ARC benchmark, GPT-4.1-mini at-
tains 97%, exceeding GPT-4 (96.4%) and nearly matching
LLaMA-3.1 405B (96.9%), with GPT-4.1-nano at 92% and
LLaMA-3.1 8B rising to 86% from 83.4% (HyperAl 2025).
These results demonstrate that our approach effectively en-
hances reasoning performance for both large and mid-sized
language models.

While stronger GPT-based models mainly benefit from
stabilizing consensus, smaller models like LLaMA-3.1 8B
achieve the largest relative improvements, indicating that
collective agreement is especially valuable for weaker sys-
tems. The dynamic graph architecture preserves agent diver-
sity while fostering collaboration, and strategy effectiveness
tracking allows adaptive selection of reasoning approaches,
contributing to robustness. Limitations include reliance on
pre-trained models, which may propagate biases, and in-
creased computational cost from using multiple agents.

Overall, multi-agent reinforcement learning with graph
attention networks significantly improves reasoning per-
formance through structured collaboration. The framework
achieves measurable gains across datasets and demonstrates
broader applicability to other reasoning and knowledge-
intensive tasks, though practical deployment requires careful
consideration of cost and scalability.
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