
Multi-Agent Video Recommenders: Evolution, Patterns, and Open Challenges

Srivaths Ranganathan1, Abhishek Dharmaratnakar2, Anushree Sinha3, Debanshu Das4

1Google LLC, Mountain View, USA
2Google LLC, Mountain View, USA
3Google LLC, Mountain View, USA
4Google LLC, Mountain View, USA

Abstract

Video recommender systems are among the most popular
and impactful applications of AI, shaping content consump-
tion and influencing culture for billions of users. Traditional
single-model recommenders, which optimize static engage-
ment metrics, are increasingly limited in addressing the dy-
namic requirements of modern platforms. In response, multi-
agent architectures are redefining how video recommender
systems serve, learn, and adapt to both users and datasets.
These agent-based systems coordinate specialized agents re-
sponsible for video understanding, reasoning, memory, and
feedback, to provide precise, explainable recommendations.
In this survey, we trace the evolution of multi-agent video
recommendation systems (MAVRS). We combine ideas from
multi-agent recommender systems, foundation models, and
conversational AI, culminating in the emerging field of large
language model (LLM)-powered MAVRS. We present a tax-
onomy of collaborative patterns and analyze coordination
mechanisms across diverse video domains, ranging from
short-form clips to educational platforms. We discuss repre-
sentative frameworks, including early multi-agent reinforce-
ment learning (MARL) systems such as MMRF and recent
LLM-driven architectures like MACRec and Agent4Rec, to
illustrate these patterns. We also outline open challenges in
scalability, multimodal understanding, incentive alignment,
and identify research directions such as hybrid reinforce-
ment learning–LLM systems, lifelong personalization and
self-improving recommender systems.

1. Introduction and Motivation
Recommender systems (RSs) have become essential for nav-
igating the vast and growing landscape of video on the in-
ternet (Liebman, Saar-Tsechansky, and Stone 2015; Ado-
mavicius and Tuzhilin 2005; Ricci, Rokach, and Shapira
2011). They curate personalized feeds, improve user satis-
faction, and support the attention economy across platforms
for short-form entertainment, music streaming, live broad-
casts, and educational media. The large-scale, high-impact
nature of modern video recommenders makes them a perfect
testing ground for developing and validating LLM-powered
multi-agent systems.
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Conventional RS pipelines, whether collaborative filter-
ing (Koren, Bell, and Volinsky 2009; Rendle 2010), deep se-
quential models (Kang and McAuley 2018; Sun et al. 2019),
or reinforcement-learning optimizers (Mnih et al. 2015; Sut-
ton and Barto 2018), operate largely as single-agent sys-
tems, optimizing one global objective (e.g., click-through
rate or watch time). This paradigm not only neglects com-
peting goals, such as diversity, fairness, and explainability
(Zhang and Chen 2020; Burke 2017), but also hinders the
system from adapting to the dynamic and complex nature of
real-world environments, including heterogeneous content,
evolving user intent, and complex feedback loops. (Quad-
rana, Cremonesi, and Jannach 2018; He et al. 2017).

Recent progress in multi-agent learning has introduced
decentralized and cooperative paradigms that decompose
the recommendation process into interacting roles. Each
agent can specialize in tasks, such as perception, reasoning,
or feedback integration, jointly optimizing a shared objec-
tive through communication and coordination (Wang et al.
2024a, 2025). These developments reveal that a multi-agent
design can solve more complex user problems, increas-
ing recommendation quality and user engagement (Boadana
et al. 2025).

Concurrently, the emergence of foundation models (FMs)
[large language and multimodal models trained on vast cor-
pora] has transformed how recommender systems can repre-
sent, reason, and interact (Vaswani et al. 2017; Devlin et al.
2019; Brown et al. 2020). FMs enable zero-shot general-
ization (He et al. 2023; Ranganathan et al. 2025), natural-
language interfaces, and cross-modal reasoning over text,
vision, and audio. When coupled with multi-agent coordi-
nation, they form the basis of agentic recommender systems
which autonomously plan, reflect, use tools and coordinate
with other agents to achieve their goals. (He et al. 2020;
Wang et al. 2025).

Despite this rapid progress, the field lacks a unified taxon-
omy that bridges classical multi-agent reinforcement learn-
ing with these emerging foundation-model paradigms across
diverse video ecosystems (Wu et al. 2023; Zhang, Yang, and
Basar 2021). Prior surveys have focused either on Multi-
Agent RL or on foundation models in traditional recommen-
dation systems or collaboration in generic multi-agent sys-
tems, leaving a gap in understanding how these streams con-
verge in modern recommender systems (Zhou et al. 2024a).



Overall, this work aims to build that bridge for the domain
of multi-agent video recommendation systems (MAVRS),
outlining a pathway toward self-improving, transparent, and
trustworthy next-generation video recommenders. Although
this paper focuses on ”video” recommenders, some of the
underlying principles can be generalized to other recommen-
dation domains.

2. Background and Related Work
Before the advent of multi-agent and LLM-driven frame-
works, the field of recommender systems was dominated
by two primary paradigms: collaborative filtering and
content-based filtering. Collaborative filtering (CF) operates
on the principle of homophily, identifying users with similar
taste profiles to make recommendations based on what
analogous users have enjoyed (Ricci, Rokach, and Shapira
2011). Content-based (CB) methods, in contrast, focus on
the intrinsic properties of items and recommend content
with features similar to those a user has previously rated
positively (Adomavicius and Tuzhilin 2005; Koren, Bell,
and Volinsky 2009). While often effective, these classical
approaches face challenges such as the ”cold start” problem
for new users or items, data sparsity in user-item interaction
matrices, and a limited ability to capture the dynamic,
multi-faceted nature of user intent (Burke 2017). These
challenges paved the way for more complex, decentralized
models, which form the basis of modern multi-agent
systems (Quadrana, Cremonesi, and Jannach 2018; He et al.
2017; Sun et al. 2019; Zhang et al. 2019).

Multi-Agent Recommender Systems
Early multi-agent recommender systems (MARS) emerged
from distributed AI research, where the goal was to decom-
pose recommendation subtasks among cooperative software
entities (Wooldridge 2009; Selmi, Brahmi, and Gammoudi
2014). Selmi et al. (2014) identified four canonical roles:
interface agents that interact with users, filtering agents
that match items to preferences, learning agents that update
profiles, and mediator agents that resolve conflicts across
heterogeneous sources. Subsequent systems incorporated
negotiation, trust modeling, and content aggregation to
enhance autonomy and scalability (Burke 2017). Although
these designs improved modularity, they relied heavily
on symbolic reasoning and rule-based communication,
limiting adaptability in large-scale, dynamic video en-
vironments. The success of deep reinforcement learning
(DRL)—notably the Deep Q-Network (DQN) (Mnih et al.
2015)—catalyzed a wave of research towards optimizing
multi-agent recommender systems using DRL (Sutton
and Barto 2018; Liebman, Saar-Tsechansky, and Stone
2015). In MARL, multiple agents learn coordinated policies
through shared or partially shared rewards. Model-based
methods such as MMRF optimize heterogeneous feedback
signals (e.g., watch-time, like-rate, dwell-time) using
attention-based message passing among agents, yielding
stable off-policy learning (Wang et al. 2025).

Foundation-Model-Powered Recommendation
Foundation models (FMs)—large language and multimodal

transformers—have redefined how recommender systems
can represent and reason about content (Vaswani et al.
2017; Devlin et al. 2019; Brown et al. 2020; Radford et al.
2021; Alayrac et al. 2022). Large Language Models (LLMs)
provide enhanced generalization abilities, having trained on
extensive datasets, allowing them to understand complex
patterns and handle new items or user trends effectively
(Chowdhery et al. 2023; Touvron et al. 2023). They offer
improved explanation and reasoning capabilities by provid-
ing more comprehensive and context-aware justifications
(Ouyang et al. 2022; Zhang and Chen 2020). Additionally,
LLMs enhance personalization and interactivity through
their natural language processing features, enabling dy-
namic adaptation to user feedback and preferences (Chen,
Yu, and Huang 2024). They can also allow users to have
more fine-tuned control over the system’s understanding
of user preferences and, subsequently, the recommended
content (Boadana et al. 2025).

LLMs have been integrated into RS through three main
paradigms: (i) feature-based, using FMs as embedding
extractors for user and item representations (Wang et al.
2024a); (ii) generative, treating recommendation as text or
sequence generation by prompting or fine-tuning (Brown
et al. 2020; Devlin et al. 2019); and (iii) agentic, where
the LLM serves as the core of autonomous reasoning that
plans, memorizes, and interacts through natural language
(Boadana et al. 2025).

Agentic Frameworks
Recent studies combine multi-agent coordination with LLM
reasoning to create conversational and collaborative rec-
ommenders. An LLM-based recommender agent is an au-
tonomous entity designed to perceive its environment, make
decisions, and take actions within a recommendation sce-
nario (Chen, Yu, and Huang 2024).

MACRec and its extension MACRS organize LLM agents
into hierarchical roles—manager, analyst, searcher, reflec-
tor, and interpreter—to perform sequential and dialogue-
based tasks (Wang et al. 2024a). EmotionRec and Mu-
sicAgent further incorporate multimodal affect detection,
enabling personalized music and video recommendation
grounded in user emotion and context (Boadana et al. 2025;
Yu et al. 2023). These systems demonstrate that emotional
awareness and cooperative reasoning can significantly en-
hance engagement and trust (Wang et al. 2025).

3. Collaborative Multi-Agent Video
Recommender Patterns

The collaborative interactions between LLM agents in
video recommendation can be categorized into distinct
architectural patterns. This taxonomy classifies systems
according to the primary mechanism of agent interaction
and the overarching goal of the collaboration, revealing how
different structures are engineered to solve specific prob-
lems. The following sections detail prominent architectures,
each illustrated with a key example from recent research
(Wang et al. 2025).



Figure 1: Illustration of Multi-agent Video Recommender patterns highlighting an example for each pattern in Section 3.

3.1. Hierarchical Orchestration

This architecture employs a central coordinating agent
that directs the actions and integrates the outputs of special-
ized, subordinate agents to achieve a unified objective. The
collaboration pattern is explicitly top-down, with the coor-
dinating agent orchestrating the contributions of the agen-
tic group. Subordinate agents may operate in two primary
modes: (1) collaboratively, to jointly identify an optimal rec-
ommendation, or (2) competitively, proposing distinct rec-
ommendations from which the coordinating agent selects
based on user signals or other optimization criteria (Rahwan
et al. 2019; Wang et al. 2021).

A prominent example of this model is the Model-based
Multi-agent Ranking Framework (MMRF), (Zhou et al.
2024b) designed to maximize user WatchTime on a short-
video platform. In MMRF, a main agent is dedicated to the
primary objective (WatchTime) and is supported by auxil-
iary agents, each tasked with maximizing a secondary user
interaction signal (e.g., Follow, Like, Comment). Coordi-
nation is achieved via an “Attentive Collaboration Mecha-
nism,” which permits the main agent to dynamically weigh
and integrate salient information from the auxiliary agents.
This hierarchical structure allows the system to optimize for
a primary metric while strategically leveraging correlated
signals from secondary user preferences.

The MMAgentRec system (Xiao 2025), applied in the
tourism domain, presents a conceptual variation. It prompts
a single LLM to simulate multiple expert personas from di-
verse domains (e.g., natural sciences, social sciences, hu-
manities), which then provide interdisciplinary advice on a
user’s request. This framework also incorporates a “reflec-
tion mechanism,” enabling the LLM to self-critique its out-
puts and refine its decision-making (Ouyang et al. 2022).
This approach leverages the LLM’s latent knowledge by
structuring its reasoning process as an internal, collaborative
dialogue among simulated experts (Boadana et al. 2025).

This architectural pattern can be generalized to multiple,

distinct agents, each parameterized with specific prompts
or inputs to optimize for different objectives. In a video RS
context, this could be implemented as specialized agents
recommending content from different domains (e.g., News,
Education, Music) or optimizing for divergent engagement
goals (e.g., long-term user value vs. short-term engagement)
(Chen, Wang, and Chen 2023; Wang et al. 2025).

3.2. Pipeline-based Modular Collaboration

In this architectural pattern, agents operate sequentially,
forming a processing pipeline where each agent executes a
distinct, specialized task. The output of one agent serves as
the direct input for the next, establishing a modular work-
flow that decomposes a complex problem into manageable
stages. This pattern is analogous to traditional, non-agentic
industry systems where distinct engineering teams manage
separate data processing pipelines (e.g., video processing
and indexing, user history summarization, model training)
that write intermediate outputs to offline databases (Zhou
et al. 2024a; Adomavicius and Tuzhilin 2005; He et al. 2017;
Da Silva, Marcolino et al. 2023).

The VRAgent-R1 system demonstrates this approach,
utilizing a two-stage pipeline to enhance video recommen-
dation performance:

1. Item Perception (IP) Agent: This initial agent processes
raw, multimodal video content. It employs a “human-like
progressive thinking” process to move beyond surface-
level features, generating an enhanced semantic sum-
mary that captures latent, recommendation-relevant se-
mantics (Radford et al. 2021; Alayrac et al. 2022; Li et al.
2023).

2. User Simulation (US) Agent: The semantic summary
from the IP Agent enriches the base recommender
model’s item representations. The US Agent leverages
this enhanced understanding to simulate user decisions.
This agent’s feedback is integrated into a reinforcement
learning (RL) loop, with rewards for predicting the next
video watched by the user and for providing Chain of



Thought reasoning of whether a user would like a specific
video. The resulting learned policy is better aligned with
human preferences, and subsequently generates higher-
quality recommendations (Mnih et al. 2015; Sutton and
Barto 2018).

In contrast to the two-stage VRAgent-R1, the authors of
MACRec propose a conversational recommender system
with an alternative task decomposition (Wang et al. 2024b):

• Manager: Assigns sub-tasks to other agents, aggregates
their responses, and reasons about the task status to gen-
erate a final response to the user or instantiate new sub-
agents.

• Reflector: Evaluates the Manager’s proposed response
and provides critical feedback for improvement. The
Manager uses this feedback to decide whether to share
the current recommendation with the user or iterate fur-
ther (Ouyang et al. 2022).

• User/Item Analyst: Provides a nuanced analysis of both
user preferences and item content. This role is analogous
to the combined functions of the IP and US agents in
VRAgent-R1.

• Searcher: Executes search queries and summarizes the
results for the Manager. This two-stage process (search-
then-summarize) optimizes token consumption for the
Manager agent (Boadana et al. 2025).

• Task Interpreter: Interfaces with the user, converting
natural language queries into structured task descriptions
for the Manager. It also maintains the conversational state
and history across multiple Manager calls (Fang et al.
2024; Huang et al. 2025a).

3.3. User-Agent Collaboration

In this architecture, multiple agents collaborate inter-
nally to power a single, user-facing conversational inter-
face (within a broader recommendation surface) where the
primary objective is not to provide recommendations, but
to empower the end-user with direct, intuitive control over
their recommendation feed, thereby enhancing their “sense
of agency” (Floridi and Cowls 2019).

TKGPT (Niu, Vishnuvardhan, and Punnam 2025) is a
system designed around this principle. It functions as an
LLM-enhanced chatbot that allows users to modify their
TikTok “For You” page through natural language. This is
achieved through a partnership between two internal assis-
tants:
1. The Recommender Assistant interprets the user’s con-

versational requests to generate relevant keywords for
video topics.

2. The Sorting Assistant uses the LLM to assign weights
to these keywords, which determine the proportion of
videos for each topic in the next batch of 32 videos.
These videos are then shuffled and presented to the user.

This collaboration translates a user’s natural language intent
into concrete algorithmic adjustments via a proportional
allocation and batch-based update mechanism, creating a
direct and transparent control interface (Huang et al. 2025a;

Fang et al. 2024).

3.4. User Simulation Agent Ensembles

This architecture uses agents not as the core recom-
mender, but as a simulated population of users. The goal is to
generate high-fidelity synthetic interaction data, which can
be used to evaluate system performance offline, train other
models, or study complex user behavior phenomena with-
out the cost and risk of live A/B testing (Wang et al. 2025;
Rahwan et al. 2019).

Agent4Rec (Zhang et al. 2024a) is the primary example
of this pattern, creating a simulator with thousands of LLM-
empowered generative agents (Wang et al. 2025). Each agent
is initialized from real-world datasets with a detailed pro-
file, including unique tastes and social traits like activity (in-
teraction frequency) and conformity (alignment with popu-
lar sentiment). The central goal is to achieve “agent align-
ment” by ensuring simulated behaviors are faithful to those
of real humans, allowing the ensemble to replicate effects
like the “filter bubble” (Zhang et al. 2024c). The US Agent
from VRAgent-R1 also serves as a simulation agent. These
two systems exemplify different philosophies for achieving
alignment: Agent4Rec relies on rich, static profiling initial-
ized from real data, whereas VRAgent-R1’s US Agent uses
a dynamic, in-loop training method—Reinforcement Learn-
ing with Group Relative Policy Optimization (GRPO)—to
continuously align its behavior with real user decisions
(Chen et al. 2025).

This simulation pattern can be used to create a sandbox
for testing multi-agent systems’ insights on social norms and
governance. For example, Agent4Rec’s modeling of user en-
sembles allows researchers to prototype various agent incen-
tive formulations and observe emergent behaviors (like filter
bubbles) without real-world risk.

4. Agent-centric Evaluation
Evaluating multi-agent recommender systems (MARS) dif-
fers fundamentally from classical single-model recom-
menders because multiple agents interact, negotiate, and
learn concurrently (Dafoe et al. 2021; Zhang et al. 2024c).
Standard metrics such as Precision@K and NDCG remain
necessary to measure the quality of the recommendations
(Adomavicius and Tuzhilin 2005; He et al. 2017) but are
insufficient to capture coordination, reasoning quality, and
emergent behaviors of the agentic framework itself (Huang
et al. 2025a; Zhang et al. 2024b). Multi-agent RS may also
perform better for nuanced or niche recommendations which
are often in the tail-end of frequency in most evaluation
datasets, but can influence a user’s subjective evaluation of a
RS (Quadrana, Cremonesi, and Jannach 2018; Burke 2017).

A comprehensive evaluation must therefore be multi-
dimensional, assessing not only the final output but also the
internal processes of the agents (Zhou et al. 2024a; Zhang
et al. 2024c). We propose five key dimensions for a holistic,
agent-centric evaluation.

4.1. Task-Specific Quality



Table 1: Evaluation of collaborative multi-agent video recommender architectures. Metrics emphasize coordination, user align-
ment, and computational feasibility.

Pattern Primary Evaluation Focus Representative Metrics Critical Failure Points & Risks

Hierarchical
Orchestration (e.g.,
MMRF, MMAgentRec)

Orchestration Effectiveness: How well
does the central agent integrate diverse
sub-goals to optimize the primary system
objective?

Main objective metric (e.g., WatchTime),
contribution weights (from attentive
mechanism), system-wide latency.

Coordinator Bottleneck: The central agent
becomes a single point of failure. Conflicting
Goals: Auxiliary agents may work at
cross-purposes, harming the main objective.

Pipeline-based Modular
(e.g., VRAgent-R1,
MACRec)

End-to-End Task Quality: How well does
the final output perform after passing
through all sequential stages?

Quality of intermediate outputs, error
propagation rate, end-to-end latency.

Compounding Errors and Brittleness: An error
in an early agent (e.g., IP Agent) can degrade the
entire chain.

User-Agent Collaboration
(e.g., TKGPT)

User-Perceived Agency: Does the user feel
in control and satisfied with the system’s
response to their natural language
commands?

User satisfaction (SUS scores), task
success rate (from user studies), latency
from command to feed update.

Misinterpretation: The system may
misunderstand the user’s (often ambiguous)
intent and make drastic, undesirable changes to
recommendations.

User Simulation Ensemble
(e.g., Agent4Rec)

Behavioral Fidelity: How accurately does
the simulated agent population replicate
the statistical properties of real human
users?

KL divergence (or similar) between
simulated and real interaction
distributions; replication of known
macro-effects (e.g., filter bubbles).

Lack of Generalization: Agents overfit to
initialization data and fail to model novel
behaviors. Prohibitive Cost: High computational
overhead for running thousands of LLM agents.

This dimension evaluates the performance of an individual
agent on its specialized sub-task, separate from the final rec-
ommendation (Zhang et al. 2024c; Ouyang et al. 2022).

• For Perception Agents (e.g., the IP Agent in VRAgent-
R1): Evaluation can involve comparing the agent-
generated representation/summary for a sample of videos
against human-generated summaries or ground-truth
labels using metrics like ROUGE, BERTScore, or
emotion-based recognition signals (Radford et al. 2021;
Alayrac et al. 2022; Li et al. 2023; Chaugule et al. 2016).

• For Reasoning Agents (e.g., the ”reflection mechanism”
in MMAgentRec): Evaluation is often qualitative, assess-
ing the logical coherence, factuality, and self-correction
capability of the agent’s internal monologue or ”scratch-
pad” (Ouyang et al. 2022).

• For Specialized Recommenders (e.g., the auxiliary
agents in MMRF): These can be evaluated on their own
proxy metrics (e.g., can the ’Like’ agent predict ’Likes’
with high precision?) .

4.2. Coordination & Collaboration Efficiency

This dimension assesses the interaction between agents, fo-
cusing on the overhead and effectiveness of their collabora-
tion.

• Communication Overhead: This is a critical metric for
LLM-based systems, measured in the number of tokens,
messages, or API calls exchanged between agents to
reach a decision. The ”Searcher” agent in MACRec is an
example of a design that explicitly optimizes this (Huang
et al. 2025a; Zhang et al. 2024c).

• Latency: The end-to-end time from user request to final
recommendation. This is vital for real-time video feeds
and includes the cumulative processing and communica-
tion time of all agents in the chain (Dafoe et al. 2021;
Huang et al. 2025b).

• Contribution Alignment: In hierarchical systems like
MMRF, this measures whether the auxiliary agents’ con-
tributions (e.g., ’Follow’ signal) are weighted appropri-
ately and genuinely improve the main agent’s primary
objective (’WatchTime’).

4.3. System-Level & Emergent Properties
This dimension evaluates the macro-behavior of the en-
tire system, particularly its stability and adaptability (Zhang
et al. 2024c; Fang et al. 2024).

• Robustness & Fault Tolerance: This tests how the sys-
tem handles the failure of a single agent. Does a pipeline-
based system collapse (a ”brittle” failure), or can a hierar-
chical system’s coordinator route around the failed agent
(Fang et al. 2024; Dafoe et al. 2021)?

• Adaptability: This measures how quickly the agent en-
semble can adapt to new items, new user interests, or
a shift in the data distribution. This is a key goal for
systems using RL (like VRAgent-R1) and ”lifelong per-
sonalization” (Mnih et al. 2015; Sutton and Barto 2018;
Chen, Yu, and Huang 2024).

• Emergent Behavior Accuracy: For user simulation en-
sembles like Agent4Rec, this is the primary evaluation.
It involves measuring the statistical divergence (e.g., KL
divergence) between the simulated interaction data and
real user data (Zhang et al. 2024c,b).

4.4. Human-Alignment & User-Centric Metrics

This dimension moves beyond offline metrics to measure the
system’s impact on the end-user experience, which is often
the primary goal (Zhang et al. 2024b,c; Dafoe et al. 2021;
Chaugule et al. 2016).

• Controllability & Agency: For systems like TKGPT, the
core metric is the user’s ”sense of agency.” This is mea-
sured via user studies, assessing whether users feel their
natural language commands are correctly interpreted and



lead to a satisfying change in their feed (Zhang et al.
2024b,c).

• Explainability: A MARS architecture should naturally
provide better explainability (Zhang and Chen 2020;
Zhang et al. 2019). Evaluation can involve user studies
where participants rate the quality of explanations gen-
erated by the system (e.g., ”The ’Education’ agent sug-
gested this video, and the ’Sorting’ agent prioritized it
because you asked for ’deep dives’”) (Zhang et al. 2024b;
Dafoe et al. 2021).

• Trustworthiness: This is a longitudinal user-study met-
ric measuring whether users trust the system’s recom-
mendations and explanations over time (Zhang et al.
2024c; Floridi and Cowls 2019).

• Fairness: The quality of reasoning agents and user sim-
ulation agents strongly affects bias in the recommenda-
tions for specific slices or users or content (Burke 2017;
Mehrabi et al. 2021). Standard fairness metrics that mea-
sure equal exposure for items, such as Jain’s Index or
Gini Index, and metrics based on user group disparity
(like Equalized Odds or Demographic Parity) can be used
to measure end-to-end fairness (Wang et al. 2023; Zhang
et al. 2024b).

4.5. Scalability & Economic Viability

This practical dimension assesses the cost of deploying and
maintaining the MARS (Shleifer, Nguyen, and Liu 2023;
Chen, Zhou, and Yu 2024; Zhang et al. 2024c).

• Inference Cost and Latency: For LLM-driven agents,
this is the total token cost per user request or per recom-
mendation batch and the end-to-end latency for the coor-
dinating agents to generate a recommendation (Shleifer,
Nguyen, and Liu 2023; Zhang et al. 2024c).

• Training & Alignment Cost: For systems using RL
(VRAgent-R1) or large-scale simulation (Agent4Rec),
this measures the computational resources (GPU hours,
real-user data) required to train or align the agents before
they produce high-fidelity results (Wu et al. 2024; Zhang
et al. 2024c).

5. Challenges and Open Problems
Despite the rapid progress in LLM-powered multi-agent
recommenders, deploying MAVRS at industry scale
presents significant challenges, limiting their current util-
ity and trustworthiness (Zhou et al. 2024a; Chen et al. 2025).

5.1 Computational Cost and Scalability

The reliance on large language models (LLMs) as the cogni-
tive core for agents introduces significant computational and
financial overhead. Architectures like Agent4Rec, which
simulate thousands of agents, are prohibitively expensive
for most research labs and impractical for real-time training
or inference in production RS (Shleifer, Nguyen, and
Liu 2023). Lightweight, ”distilled” agent models or more
efficient token-sharing mechanisms might offer a path
forward to widespread adoption (Chen, Zhou, and Yu 2024;

Zhou et al. 2024a).

5.2 Multimodal Grounding and Reasoning

Video is an inherently dense medium packed with informa-
tiona cross modalities: visual, audio, textual and temporal.
Current agents, especially those built on text-centric LLMs,
struggle to ”ground” their reasoning in this rich data. While
systems like VRAgent-R1 employ an Item Perception
(IP) Agent to generate semantic summaries, this is often a
lossy compression (Li et al. 2023). The challenge lies in
enabling agents to perform deep, cross-modal reasoning
directly on video streams, moving beyond metadata and
text summaries to cohesively understanding the content of
the video (Alayrac et al. 2022; Radford et al. 2021; He et al.
2023; Huang et al. 2025a).

5.3 Evaluation

As discussed in the previous section, evaluating the per-
formance of complex, collaborative agent systems is an
open problem. Offline metrics (e.g., nDCG, MRR) may not
capture the subjective benefits of context-aware, conversa-
tional recommendation (Adomavicius and Tuzhilin 2005;
He et al. 2017). Furthermore, user simulation ensembles
(Agent4Rec, VRAgent-R1) face an alignment problem: en-
suring that synthetic agent behavior is a high-fidelity proxy
for real human behavior, including irrationality, conformity,
and drift (Chen et al. 2025; Rahwan et al. 2019). Without
robust validation, it is difficult to trust simulation-based
findings or offline training (Zhang et al. 2024b).

5.4 Controllability and Trustworthiness

As agents become more autonomous, ensuring they are con-
trollable, robust, and aligned with human values becomes
essential (Floridi and Cowls 2019; Zhang et al. 2024b;
Huang et al. 2025a). In hierarchical systems (MMRF), a
subordinate agent could diverge and optimize its secondary
metric at the expense of the primary goal (Chen et al.
2025). In conversational systems (TKGPT), the translation
of user intent into algorithmic action must be transparent
and faithful (Li et al. 2023; Zhang and Chen 2020). Agents
could also fail in a silent, opaque manner, causing errors to
propagate through other downstream agents (Rahwan et al.
2019; Ouyang et al. 2022).

5.5 Incentive Alignment

In multi-agent systems, agents must be incentivized to
collaborate effectively (Rahwan et al. 2019). In current
recommenders, this is implicit (e.g., optimizing a shared
goal). However, as systems grow in complexity, agents with
different objectives (e.g., user WatchTime vs. user Likes in
MMRF) may enter into conflict. A key challenge is to design
explicit coordination mechanisms, potentially borrowing
from computational economics (e.g., auctions, contract the-
ory) (Zhang et al. 2024c; Ostrom 1990). These mechanisms
can help the high-level agent ensure subordinate agents



Challenge: Incentive
Alignment
Ensuring agents with
conflicting goals (e.g.,
WatchTime vs. Likes) co-
operate truthfully toward a
global objective.

Challenge: Multimodal
Grounding
Agents struggle to rea-
son deeply on dense video
(visual, audio, temporal),
relying on lossy text sum-
maries.

Challenge: Cost & Scala-
bility
High computational/fi-
nancial overhead of LLM
agents; impractical for real-
time inference.

Challenge: Controllability
& Trust
Agents may diverge from
goals, misinterpret user
intent, or fail opaquely;
ensuring value alignment
is difficult.

Challenge: Evaluation
Offline metrics (nDCG) are
insufficient; difficult to val-
idate if simulated users
(alignment) reflect real be-
havior.

Research: Lifelong Per-
sonalization
Develop agents with long-
term memory that learn
with the user; explore fed-
erated, on-device agents
for privacy.

Research: Human-in-the-
Loop
Use direct user feedback
(critiques, rankings) as
continuous supervision;
build transparent dash-
boards.

Research: Hybrid RL-
LLM
Use LLMs as high-level
planners to set goals/re-
wards for fine-grained RL
(policy) agents.

Research: Self-Improving
Systems
Design meta-agents that
self-evaluate, detect data
shifts, and autonomously
evolve policies to stay
value-aligned.

Figure 2: Challenges and Future Research Directions for Multi-Agent Video Recommendation Systems (MAVRS).

cooperate truthfully and robustly toward the global system
objective, even under uncertainty or conflicting signals
(Huang et al. 2025a; Zhang et al. 2024b). However, unlike
computational economics, incentives in LLM-based agents
are configured via natural language, which allows room for
the underlying LLM to interpret the prompt in ways that
differ from what the developer intended. (Yang et al. 2020)

6. Future Directions
Addressing the challenges above requires unifying algo-
rithmic efficiency, realistic evaluation, and human align-
ment (Fang et al. 2024; Zhang et al. 2024b). Future re-
search should treat multi-agent recommendation as a socio-
technical system integrating cognition, collaboration, and
ethics (Floridi and Cowls 2019; Rahwan et al. 2019).

These challenges also highlight specific directions for
future research, focusing on the development of more
intelligent, adaptive, and human-centric systems.

6.1. Hybrid RL-LLM Architectures

A promising frontier is the deeper integration of Reinforce-
ment Learning (RL) and LLMs. LLMs excel at high-level
reasoning, planning, and understanding user intent (as seen
in TKGPT or the Manager MACRec), while RL excels at
fine-grained policy optimization in dynamic environments
(as seen in VRAgent-R1). Future systems may use an LLM
as a ”planner” to set high-level goals or generate reward-
shaping functions for a subordinate RL agent, creating a
hybrid system that is both context-aware and adaptive to
user feedback (Sutton and Barto 2018; Mnih et al. 2015;
Zhang et al. 2024c). These emerging “planner–executor”
hybrid systems show promise for scaling such coordination
while maintaining explainablity (Garnelo and Shanahan
2019; Li et al. 2023).

6.2. Lifelong Personalization and Agent Memory

Current models largely operate on a session- or user-profile-
level memory. The next step is lifelong personalization,
where agents build and maintain a dynamic, long-term
memory of user preferences and evolving interests. This
involves moving beyond static profiles (Agent4Rec) to
models where agents can reason over their interaction
history, self-correct past assumptions, and proactively adapt
to a user’s long-term personal journey, effectively learning
with the user. This requires new designs for maintaining a
summarized version of long-term user preference history
(Chen, Yu, and Huang 2024; Li, Wang, and Xu 2024; Wang,
Huang, and Wu 2025). A promising research area here is
Federated Collaboration, which applies federated learning
principles to the multi-agent paradigm. A local ”User
Profile Agent,” co-located with the user (such as on the
device), could perform deep, lifelong personalization using
raw interaction data that never leaves the device. The local
agent can interact with online RS agents while optimizing
for privacy and user well-being (Shleifer, Nguyen, and Liu
2023; Huang et al. 2025a).

6.3. Human-in-the-Loop Validation

Long-term trust depends on user participation (Burke
2017; Zhang and Chen 2020). Crowdsourced or platform-
integrated feedback, where users critique and rank recom-
mendations, can serve as continuous supervision (Huang
et al. 2025a; Fang et al. 2024). Interactive dashboards
visualizing reasoning and fairness trade-offs will enhance
transparency and literacy among users and regulators
(Zhang et al. 2024b; Floridi and Cowls 2019). In the long
term, we can derive these signals directly using optimized
multimodal affect detection (e.g., facial expression or tone
analysis) to enhance personalization (Chaugule et al. 2016).



6.4. Toward Self-Improving Recommenders

The next frontier is self-governing ecosystems where agents
perceive, reason, and evolve collaboratively (Fang et al.
2024; Wang et al. 2025). Such multi-agent architectures
should enable a meta-agent to evaluate reasoning quality,
detect distributional shifts, and autonomously propose
schema or policy updates (Chen, Yu, and Huang 2024;
Huang et al. 2025a). The system should understand cause
and effect and evolve its strategies to achieve better out-
comes than optimizing for short-term objectives like watch
time (Peters, Janzing, and Schölkopf 2017; Schölkopf et al.
2021). By self-reflecting to continuously optimizing the
behavior and incentives of the modular internal agents, these
multi-agent systems can evolve from content delivery tools
into recommenders that are closely aligned with human
values (Floridi and Cowls 2019; Zhang et al. 2024b).
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