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Abstract

In recent years, large language model (LLM)-based multi-
agent environments have attracted growing attention. Most
existing research on LLM agents assumes the presence of
either a central coordinator or a shared utility function. In
real-world settings, however, agents often operate in environ-
ments that are not fully collaborative, requiring them to esti-
mate the utility functions of others and negotiate task assign-
ments. In this work, we introduce a framework that enables
LLM agents to perform task decomposition and exchange
in a utility-aware manner, and we assess its capabilities un-
der such circumstances. The framework incorporates mecha-
nisms for utility estimation and per-turn proposal validation.
Experimental results show that these mechanisms improve
agreement stability and negotiation efficiency when applied
to LLMs with strong reasoning capabilities.

1 Introduction

Recent years have witnessed a surge of interest in large
language model (LLM)-based multi-agent systems in both
academia and industry because such systems have proven
effective in accomplishing complex tasks (e.g., software de-
velopment) that single-agent systems would struggle with
(Chen et al. 2024). Software infrastructure—such as the
Agent2Agent protocol (A2A Project Contributors 2025)—
that facilitates collaboration between multiple agents owned
by different individuals or organizations is also being ac-
tively developed. This trend makes research on designing
effective mechanisms for agent collaboration under diverse
conditions increasingly important.

The majority of existing research on LLM-based multi-
agent systems focuses on scenarios where either a central
coordinator or a shared utility function is present, leaving
situations without these conditions relatively underexplored
(see Section 2). In real-world contexts, however, differences
in authority or governance often make it difficult to establish
a central coordinator—particularly when agents are owned by
different organizations or individuals. Conflicts of interest
can also arise, which can discourage agents from disclosing
their utility functions for strategic reasons. In such cases,
agents must negotiate task allocation. During negotiation,
agents estimate other agents’ utility functions, decompose
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tasks into subtasks that counterparts are likely to accept, and
then delegate or exchange those subtasks. Understanding the
extent to which current LLM agents can handle such scenar-
ios is critical for designing effective methods of collabora-
tion and coordination.

In this paper, we present a novel framework that equips
LLMs to perform task decomposition and exchange in a
utility-aware manner, and evaluate the capability of current
LLM agents under such settings (Section 3). Within this
framework, agents coordinate under our utility-aware strat-
egy comprising (i) prompts designed to encourage reasoning
about the utility functions of others and (ii) per-turn pro-
posal validation with feedback. We then use this framework
to conduct experiments examining how LLLM agents behave
in two types of negotiation environments: competitive and
cooperative (Section 4 and 5).

2 Related Work

Our work is related to prior research on single LLM agents,
multi-LLM agents, and negotiation agents in the following
respects.

Single LLM Agents. LLM agents are autonomous sys-
tems that use LLMs for reasoning and interact with external
tools or environments to complete tasks (Luo et al. 2025).
A common feature is task decomposition, where a complex
task is broken down into smaller, clearer subtasks that can be
sequentially solved and aligned with appropriate tools (Yao
et al. 2023; Qin et al. 2023; Wang et al. 2023; Long 2023;
Shen et al. 2024). This stepwise reasoning makes otherwise
intractable tasks manageable, but existing studies consider
only a single agent and thus do not address coordination in
multi-agent settings.

Multi-LLM Agents. Multi-agent approaches have been
applied to a variety of complex tasks, such as software de-
velopment, mathematical reasoning, and embodied environ-
ments (Li et al. 2023; Chen et al. 2024; Hong et al. 2024;
Huang et al. 2025). These studies typically assume shared
objectives or the presence of a central coordinator. In con-
trast, our work targets decentralized settings where agents
have different utilities and no central coordinator.

Negotiation LLM Agents. Another line of work explores
negotiation scenarios, showing that LLM agents can adopt
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Figure 1: Negotiation example with utility-aware task decomposition and exchange. Top-left: each agent’s main task (3 indivis-
ible subtasks) with skill icons—green check (strong), yellow triangle (neutral), red cross (weak). Left-middle: task ownership
across proposals under utility-aware decomposition/exchange. Bottom-left: termination by Error. Right: flow—consideration
(Turn 1), proposals (Turn 2+); each proposal is validated before delivery to the counterpart.

diverse strategies and compete or cooperate with humans in
economic or strategic games (Gandhi, Sadigh, and Good-
man 2023; Duan et al. 2024; Bianchi et al. 2024; Hua et al.
2024; Shapira et al. 2024; Zhou et al. 2024; Abdelnabi et al.
2024). These studies demonstrate negotiation and strategic
reasoning skills but do not consider explicit task delegation
or utility-aware task decomposition, which are central to our
work.

3 Proposed Framework

In this section, we introduce a novel framework for assess-
ing the capabilities of LLM agents. The framework evalu-
ates LLM agents using a utility-aware strategy, defined as
the integration of two components (right panel of Figure 1):
(1) a prompt that asks agents to reason about both parties’
utilities; and (ii) per-turn proposal validation with feedback.
As shown in the top-left panel of Figure 1, each agent starts
with one main task (three atomic subtasks) and a natural-
language preference profile.

As illustrated in Figure 1, agents seek a mutually accept-
able task decomposition and exchange through negotiation.
A negotiation proceeds in three steps:

(1) Strategic consideration: In Turn 1, each agent pri-
vately plans to maximize its utility, compares options, and
selects an initial proposal and overall plan; no proposal is
sent in this turn.

(2) Proposal phase: From Turn 2 onward, agents alter-
nate proposals: either decomposing and exchanging tasks

or keeping them unchanged; accept/reject signals reveal the
counterpart’s valuations and inform the next proposal. In-
valid proposals are detected before being delivered to the
counterpart; when flagged, the proposer receives targeted
feedback and may retry locally without consuming the turn.
These mechanisms elicit proposals responsive to revealed
preferences and drive efficient convergence.

(3) Termination and outcomes: The negotiation ends
when (i) the counterpart accepts (Agreed), (ii) the turn
limit is reached without agreement (Disagreed), or (iii)
an agent exceeds the per-turn limit on invalid proposals
(Error) (bottom-left panel of Figure 1). In the Error case,
no final allocation is recorded and no utilities are computed.

Utility-aware Decomposition and Exchange. During ne-
gotiation, agents may decompose their current composite
task into smaller composites while explicitly considering the
counterpart’s utility. For example, in the right panel of Fig-
ure 1, Bob infers from Alice’s prior proposal that Alice fa-
vors Marketing and incorporates that signal into the next of-
fer. Because each rejection and counterproposal reveals what
the other side values or disfavors, agents use this feedback to
refine their decompositions and adjust subsequent proposals
so they are easier to accept, helping the dialogue converge
more quickly to a mutually satisfactory exchange.

4 Experimental Setup

Using our utility-aware framework, we compare the frame-
work to a non-utility-aware baseline in both cooperative and



Table 1: Comparison across models (10 runs per setting). All numerical values are reported as mean =+ standard deviation (SD)
unless otherwise noted. Columns: Agreement = rate (% of valid runs, i.e., excluding Error); Error = rate (% of all runs);
Turns = number of turns per valid run; Alice/Bob = mean normalized utility of the final allocation (range [0, 1]); SW (social
welfare) = Alice+Bob (range [0, 2]); L» to Pareto = Euclidean distance to the Pareto front. Proposed = utility-aware (explicit
utility reasoning + per-turn proposal validation with feedback). Dashes indicate no valid runs.

(a) Cooperative

Model

Setting

Agreement Error Turns Alice Bob SW

L to Pareto

o4-mini Proposed 100 + 0%

0£0% 3.0%£14 0.78£0.07 0.74£0.15 1.52£0.20 0.27+0.15

Baseline 83.3 +15.2% 40+ 15% 4.8+4.0 0.81 £0.10 0.79 £0.12 1.60 £0.22 0.21 £0.15

GPT-4.1-mini Proposed 1004 0%

80+£13% 2.0+0.0 0.75£0.00 0.70£0.00 1.45+0.00 0.32+0.0

Baseline 28.6 +17.1% 30+14% 7.7+3.9 0.75£0.00 0.70£0.00 1.45+0.00 0.32+0.0

GPT-4.1-nano Proposed 0+£0% 100 £ 0% — — — — —
Baseline 0+ 0% 50 +£16% 10£0.0 0.75+0.00 0.70 £0.00 1.45+0.00 0.324+0.0
(b) Competitive
Model Setting Agreement Error Turns Alice Bob SW L5 to Pareto
o4-mini Proposed 100+0% 10+9% 3.24+2.0 0.62+0.14 0.26 +0.06 0.88 +0.13 0.022 +0.013

Baseline 60.0 +21.9% 50 £ 16% 6.8 4.0 0.58 £0.00 0.25£0.00 0.83£0.00 0.028£0.0

GPT-4.1-mini Proposed 0+ 0% 100 + 0% — — — —
Baseline 0+ 0% 0+0% 10+0.0 0.58£0.00 0.25+0.00 0.83 £0.00 0.028 £0.0
GPT-4.1-nano Proposed 0+ 0% 100 + 0% — — — —
Baseline 0+ 0% 404+ 15% 104+0.0 0.58+0.00 0.254+0.00 0.83+£0.00 0.028 +0.0
(c) Initial utilities
Scenario Alice Bob SW L, to Pareto

Cooperative 0.75 0.70

1.45 0.32

Competitive 0.58 0.25 0.83 0.028

competitive scenarios.

Tasks. We adopt two tasks from Shen et al. (2024) as the
main tasks, each decomposed into three indivisible atomic
tasks; each agent initially holds one of these main tasks. To
enumerate all combinations of the atomic tasks, we prompt
an LLM to generate coherent natural-language task descrip-
tions. We refer to each synthesized description as a compos-
ite task. See Appendix A.l for examples of main, atomic,
and composite tasks.

Utility Generation. We construct the agent—task utility ta-
ble using an LLM. For each composite task ¢ and agent
a € {Alice, Bob}, we supply (i) the description of ¢ and (ii)
the agent’s natural-language preferences, and ask the model
to return a utility for c. Repeating this for all ¢ yields a utility
vector that is aligned one-to-one with the set of composite
task descriptions. See Appendix A.2 for examples of these
natural-language preferences and the corresponding gener-
ated utilities.

Scenario. We implement two scenario types: competitive
and cooperative. We control the degree of competition by
manipulating the degree of overlap in the agents’ natural-
language preferences. See Appendix A.3 for examples of
utility allocation under each scenario.

Proposal Validation. At each turn, the proposal under-
goes validation before being delivered to the other agent;
if it is invalid, we record the invalid proposal pattern and
ask the proposer to retry with targeted feedback; these re-
tries do not advance the turn counter. We cap per-turn retries
at K = 5. If an agent exceeds this limit in a single turn, we
terminate the negotiation and record the outcome as Error.
See Appendix B.2 for examples of validation rules and in-
valid proposal patterns.

Negotiation Strategies. We compare our utility-aware
strategy against a baseline with two modifications:

* Remove utility-aware guidance from the prompt. We
delete prompt text that encourages or instructs agents to
adopt a utility-aware strategy.

* No per-turn validation. We omit proposal-validity
checks during intermediate turns, while retaining the
final-turn check.

See Appendix B for the full prompt templates of these strate-
gies.

5 Results and Analysis
Table 1 shows the results of negotiation experiments using
three LLMs: 04-mini-2025-04-16, GPT-4.1-mini-2025-04-
14, and GPT-4.1-nano-2025-04-14. In each run, both agents



use the same model. Across models, the impact of the utility-
aware strategy is model-dependent. With o4-mini, the
strategy delivers robust and fast convergence in both scenar-
ios: agreement: 100+£0.0%; errors: 0£0.0% in cooperative,
100+0.0% and 10+9% in competitive, and it shortens nego-
tiations relative to the baseline (3.0+1.4 vs. 4.84+4.0 turns in
cooperative; 3.242.0 vs. 6.8+4.0 in competitive). For non-
reasoning models, the strategy is fragile: GPT-4.1-mini
reaches agreements only in the cooperative setting and with
higher error rates, while GPT—4 . 1-nano reaches no agree-
ments under either setting.

Cooperative Scenario. The cooperative scenario contains
many “high—high” allocations, so agents often become satis-
fied before fully pushing toward the Pareto front. This man-
ifests as shorter turns than in the competitive case (utility-
aware o4-mini: 3.0£1.4 vs. 3.242.0; baseline: 4.84+4.0
vs. 6.84+4.0) and outcomes that, while reliable and fast, sit
slightly below the baseline in utility (SW 1.5240.20 vs.
1.60£0.22) and remain farther from the front on average
(L9=0.2740.15 vs. 0.21+£0.15). In this case, the abundance
of attractive options encourages earlier acceptance, trading
marginal utility gains for quicker and more dependable set-
tlements.

Competitive Scenario. In competitive settings, genuinely
“both-high” points are scarce. The baseline struggles (lower
agreement, longer runs), whereas the utility-aware strategy
with o4-mini remains reliable (100+0% agreement on
valid runs), converges faster (3.2+2.0 vs. 6.8+£4.0 turns),
achieves higher social welfare (0.88 vs. 0.83), and moves
closer to the Pareto front on average (L2=0.022 £ 0.013 vs.
0.028 £0.0). Here, targeted guidance toward mutually bene-
ficial trades pays off more clearly: the search space is tighter,
so structured decomposition and validation help uncover ex-
changes that improve both efficiency and final allocations.

Utility transition across negotiation strategies. Under
the baseline setting, in both competitive and cooperative
scenarios, agents often pursue unilateral gains with mini-
mal compromise. As shown in Figure 2 (top row), several
runs trace corner-to-corner paths in the utility plane, jump-
ing between extremes. With the utility-aware strategy (bot-
tom row), this behavior is largely absent: trajectories settle
earlier toward interior allocations, and negotiations termi-
nate in fewer turns (Table 1).

6 Conclusion

In this paper, we introduce a framework that equips LLMs
with negotiation capabilities and evaluate it through utility-
aware task decomposition and exchange under partial infor-
mation, incorporating per-turn validation. Empirically, the
strategy helps stronger models (e.g., o4-mini) converge
faster and more reliably—especially in competitive settings
with improved Pareto proximity—while gains are modest in
cooperative cases and largely absent for non-reasoning mod-
els. As future work, we will continue the empirical analysis
under a wider range of conditions.
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Figure 2: Proposal-utility trajectories for o4-mini across
scenarios and settings. Arrows indicate transitions between
consecutive proposals; numbers near points denote turn in-
dices. Top row: baseline. Bottom row: utility-aware strategy.
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A Detailed Experimental Setup
A.1 Tasks

We take two tasks from Shen et al. (2024) and named main
tasks, each decomposed into three indivisible atomic tasks;
each agent initially holds one of these main tasks. Let n = 6
be the total number of atomic tasks across agents. We enu-
merate all 2" subsets using an n-bit mask m € {0,1}"
(1=included, O=omitted) and, for each m, prompt an LLM
to generate a coherent natural-language task description. We
refer to each synthesized description as a composite task.

Since each task description is encoded as an n-bit mask
over the universe of atomic tasks U = {a1,...,a,}, the
complementary task description mask is obtained by flip-
ping the bits within this n-bit universe. Let z(d) € {0,1}"
be the indicator vector for descriptiond, let M = 1" be the
all-ones mask. Then,

S(d) = {ai|z(d); = 1},
Zcomp(d> = Z(d) ® M,
Scomp(d) = {ai|zcomp(d)i = 1}

where @ denotes bitwise XOR between two vectors. S(d)
and Scomp(d) represent the sets of atomic tasks constitut-
ing the composite task described by d and its complemen-
tary composite task, respectively. In this way, complemen-
tary atomic tasks are computed with bit operations.

Figure 3 shows a subset of the composite tasks. Each com-
posite task is associated with a bit mask (shown in decimal)
and comprises a set of atomic tasks. For example, ’ Apply for
the Software Developer position, set an alarm for 10:00 AM
with a reminder to start preparing for the interview, and in-
stall a video conferencing tool.” has bit mask 7 (bitwise:
000111) and consists of three atomic tasks—"apply for
job”, ”set alarm”, and software_management”’. Figure 4
illustrates each main task alongside its three constituent
atomic tasks. Each main task comprises three numbered
atomic tasks, and the numbering is consistent across pan-
els; for example, the atomic tasks labeled (i) make up main
task (i).

"Install the video conferencing tool and set an alarm for 10:00 AM to remind you to start preparing for your software developer job

‘m(time=10:00 AM, reminder=Start preparing for the software developer job interview.)",
ft Confe Tool, instr i

alarm for 10:00 AM with a reminder to start preparing for the interview, and

Start preparing for the software developer job interview.)",
Conf Tool, instr i

1
"Book a flight from San Francisco to New York on July 30, 2023.": {

ight(date=2023-07-30, from=San Francisco, to=New York)"

Figure 3: A part of composite tasks

A.2 Utility Generation

We construct the agent—task utility table with an LLM. For
each composite task ¢ and agent a € {Alice, Bob}, we pro-
vide (i) the composite task description and (ii) the agent’s



Main tasks

(i) "I am looking for a software developer job, can you help me apply for one? Once I apply. please set an alarm for my
interview preparation at 10:00 AM tomorrow. Additionally, install a video conferencing tool for the interview."

(i) "I want to book a flight from San Francisco to New York on July 30th, 2023, apply for a Software Engineer job, and
take note of interview preparation and resources”

Atomic tasks

[0}

"apply_for_job(job=Software Developer)",

"set_alarm(time=10:00 AM, reminder=Start preparing for the software developer job interview.)"
"software_t ideo Conf g Tool, i )

(i)

"apply_for_job(job=Software Engincer)",

"take_note(content=Remember to prepare for the interview and research resources)"
"book_flight(date=2023-07-30, from=San Francisco, to=New York)"

Figure 4: Example of main tasks and their atomic compo-
nents. Each main task consists of three numbered atomic
tasks, and the numbering is consistent across panels; for in-
stance, the set of atomic tasks labeled (i) composes main
task (i).

preference written in natural-language, and request a raw
score 14 € [0,100]. Agent preferences are supplied as a
lightweight JSON object, e.g.,

{
"Alice": "You are good at ...",
"Bob": "You are a marketing
professional ..."
}

For each agent a, we normalize by the agent’s maximum
score across composites,

if
Ula,c) = {ra,c/ma if mg >0,

Mg = MAX Ty o = .
@ c PO 0 otherwise,

so that each agent’s top-scoring composite has utility 1.0 and
all others lie in [0, 1]. This normalization places both agents’
preferences on a common scale during negotiation.

Utility in Natural Language

Alice : "You are very good at making documents for applying for jobs.",
Bob: "You are a very good time keeper, and also good at taking notes”,

Generated Utility

"Install the video conferencing tool and set an alarm for 10:00 AM to remind you to start preparing for your software
developer job interview." 0.15,

"Apply for the Software Developer position, set an alarm for 10:00 AM with a reminder to start preparing for the
interview, and install a video conferencing tool.”: 0.75,

"Book a flight from San Francisco to New York on July 30, 2023.": 0.05,

Figure 5: Example of natural-language preferences and
LLM-generated utilities. The preferences (used in the co-
operative scenario) are converted into utilities over a subset
of composite tasks; see Figure 3.

Figure 5 illustrates how natural-language preferences are
specified and how the corresponding utilities are gener-
ated for a subset of the composite tasks (cf. Figure 3). The
natural-language preferences shown here are those used in
the cooperative scenario.

A.3 Scenario

We implement two scenario types: competitive and cooper-
ative. We control the degree of competition by manipulating
the degree of overlap in the agents’ natural-language prefer-
ences. When both agents have similar preferences (i.e., they
value the same tasks and avoid the same tasks), the interac-
tion tends to be competitive: one agent’s high utility tends
to preclude the other’s utility. Conversely, when preferences
are nearly complementary, the setting becomes cooperative
and both agents can achieve high utility.

Figure 6 contrasts the resulting utility allocations. In the
competitive scenario (Figure 6a), high utility for one agent
coincides with low utility for the counterpart due to aligned
preferences. In the cooperative scenario (Figure 6b), both
agents can reach high utility because their preferences are
diverse.

Bob's Utility
M
Bob's Utility

08 10 00 02

04 06 04 06
Alice's Utility Alice's Utility

(a) Competitive scenario (b) Cooperative scenario

Figure 6: Utility allocations under competitive (left) and co-
operative (right) scenarios.

A4 Messages

We constrain agents to an XML-like messag-
ing format as wused in Bianchi et al. (2024)

to improve mutual understanding. Agents use
the tags <PROPOSAL>...</PROPOSAL>,
<CONSIDER>...</CONSIDER>,

<ACCEPT>...</ACCEPT>, and

<REJECT>...</REJECT>. Contents inside tags ex-
cept for <CONSIDER> tags are passed to the next agent
as dialogue history. Agreement is reached when all non-
proposers react with <ACCEPT> for the most recent valid
proposal.

Each turn, we validate the current proposal; if it is invalid,
we record the invalid proposal pattern and ask the proposer
to retry with targeted feedback.

A.5 Prompt

At each turn, each agent receives a prompt to make a pro-
posal. The prompt includes: (i) the set of composite tasks
and, for each, its complementary task; (ii) the agents’ util-
ity tables over these tasks; (iii) the negotiation rules; and
(iv) the dialogue history (i.e., the negotiation history ex-
cluding content inside <CONSIDER>...</CONSIDER>
tags). Because negotiation often involves rejection, agents
are instructed to remain utility-aware of the counterpart’s
preferences. The disagreement fallback (reverting to the ini-
tial main tasks) is also specified in the prompt. Figure 7



shows an example prompt provided to Alice in Turn 1. In
total there are 64 (25) composite tasks, each with a comple-
mentary task; for readability, Figure 7 shows only two and
omits the rest.

You are agent Alice. Gl

Tum 1/10, Agent Tum #1
for your upcoming Software Engineer opportunity by applying for the job, booking a flight from San Francisco
ind adding a note to research resources and prepare for the interview." (mask=111000).

Mask legend (bit5...bit0): 0:take_note(content=Remember to prepare for the interview and research resources.),
T:apply_for_job(job=Software Engincer), 2:book_flight(date=2023-07-30, from=San Francisco, to-New York),
3:software_management(software=Video Conferencing Tool, ins stall), 4:set_al 10:00 AM, remind preparing
for the software developer job interview.), S:apply_for_job(job=Software Developer)

« Each 6-bit mask represents inclusion of atomic tasks (1 = included).

Multiple 1 indicate a composite task

Tis complement (mask XOR 0b111111) represents the bits your partner *could* take.

Your composite tasks and info:

Format: - description: (mask, utilities) < complement

- Prepare and submit your application for the Software Developer position, including a tailored resume and cover letter. (mask=000001,
util=1.00) «» complement: Prepare for your upcoming Software Engincer interview by setting a 10:00 AM alarm reminder to start your prep,
installing a video-conferencing tool, booking a July 30 flight from San Francisco to New York, submitting your application, and noting to

research resources and interview materials
- Setan alarm for 10:00 AM to remind you to start preparing for the software developer job interview. (mask=000010, util=0.10) <
complement: Apply for both Software Developer and Software Engineer positions, install the video conferencing tool, book a flight from
San Francisco to New York on July 30, 2023, and note “Remember to prepare for the interview and research resources.”

(Composite task information covers 64 composite tasks.)

Negotiation Flow (max 10 turns)

« Agent Tum 1 - only:

Privately plan your strategy:

(A)Keep as is, (B) Exchange, (C) Decompose + Exchange.

Look at your utility table to find bits that are low for you and likely high for your partner. Extracting those increases acceptance chances.
« Agent Tum 2+ - Submit a single (You can use only ONE block per tum):

{

"Alice™ ["Schedule an on-site interview and arrange travel in one step.”],

"Bob”: ["Apply simultancously to Dev and QA roles."]

i
(3 IMPORTANT !

When you write, copy-and-paste each description string exactly as it appears in the “Your composite tasks and info” list above. Even a single
character difference (extra space, period, case change, etc.) will make the proposal invalid. Never write raw atomic names like “A1"

+ Response format

<ACCEPT> I agree with this allocation. </ACCEPT>

<REJECT> This doesn't work for me. Lets try another allocation. </REJECT=>

+ Obligation regarding the previous proposal

- If the previous turn contained a from your partner, you MUST reply this turn with either or.

-1 you send, you MUST include your alterative in the same turn.

- If the previous tum did not contain a proposal, you should only send your own and omit

« If no agreement is reached by turn 10;

Each agent keeps their original composite task (or the OR-merged result)—no further exchanges.

RULES:

1. NEVER include both a composite task and its sub-tasks in a single proposal.

2. Use exactly the task deseriptions listed above (no edits allowed).

3. Decomposition is ONLY allowed for exchange purposes. You may NOT keep decomposed subtasks for yourself.

4.If an agent is assigned more than one task description, these must be merged into a single composite description whose mask is the bitwise
OR of all individual task masks.

5. Be utility-aware in decomposition/exchange:

alue to the other but low-cost to you?
alue to you but low-cost to the other?

» Propose trades that give low-cost items (for you) and request high-value items (for you). This increases total tility and moves the
outcome toward the Pareto front.
6. Never disclose your numeric uilites.

ach agent must keep at least one atomic task

istory
History w/o contents within <CONSIDER>...</CONSIDER> appears here.)

PROPOSAL></PROPOSAL>
<ACCEPT></ACCEPT>

rejection: <REJECT></REJECT>

consideration: <CONSIDER></CONSIDER>

Reminder: Your exchange proposal MUST use the descriptions exactly as provided above. Be strategic and uility-aware.

Figure 7: Example prompt provided to the agent each turn
under the utility-aware strategy.

B Negotiation Strategies

We prepare two negotiation strategies—utility-aware strat-
egy and a baseline strategy. We compare our utility-aware
strategy against a baseline with two modifications:

. Remove prompt about the utility-aware strategy: delete
prompt text that encourages or instructs agents to adopt a
utility-aware strategy.

. No per-turn validation: omit proposal-validity checks dur-
ing intermediate turns; retain the final-turn check.

B.1 Prompt difference between the two strategies

In the utility-aware strategy, agents are prompted via Rule 5
in Figure 7 to act in a utility-aware manner as follows:

Be utility-aware in decomposition/

exchange:

— Which subtasks are high-value to the
other but low-cost to you?

— Which subtasks are high-value to you

Alice

<Invalid proposal>
X Unknown task(s) are detected.
Retry a proposal again.

@ valid Proposal
Proposal

A

Proposal Validation gﬂ

Proposal
<Invalid proposal>
Bob X Atomic task(s) are missing.

Retry a proposal again.

% Proposal Validation

@& Valid Proposal

Figure 8: Per—turn proposal validation pipeline.

but low-cost to the other?

+ Propose trades that give low-cost
items (for you) and request high-value
items (for you). This increases total
utility and moves the outcome
toward the Pareto front.

In the baseline setting, we remove the above guidance
from the prompt in Figure 7. This is the only prompt-level
difference between the two strategies.

B.2 Proposal Validation

Under the utility-aware strategy, every outbound proposal
is validated before being delivered to the counterpart (Fig-
ure 8). Only validated proposals are forwarded. If a proposal
is judged invalid, it is returned to the proposer with targeted
feedback; the proposer may revise and resubmit within the
same turn without advancing the turn counter.

We categorize invalid proposals into six patterns:

* Missing <PROPOSAL> tags: the JSON-like proposal is
not enclosed in <PROPOSAL>. .. </PROPOSAL>.

* Unknown tasks: the proposal references composite tasks
that are not in the registry.

* Multiple descriptions per agent: more than one compos-
ite description is assigned to the same agent in a single
turn.

* Overlap: the same composite task is assigned to multiple
agents simultaneously.

¢ Missing atomic tasks: some atomic tasks are left unas-
signed (i.e., the full set is not covered).

* Empty agent: one agent receives all tasks while the other
receives none.

When any of these patterns is detected, the feedback spec-
ifies the reason and, when applicable, includes the relevant
bit masks for the composite tasks and the overlapping atomic
task(s). Figure 9 shows a typical Overlap error and the cor-
responding feedback. We cap per—turn retries at K (typically
K=5). If an agent exceeds this limit within a single turn, the
negotiation terminates with status Error. The retry counter
resets when control passes to the other agent.

C More Analysis

Since the utility-aware strategy exhibits its clearest effects
with o4-mini, we restrict our analysis to this model.



Invalid Proposal
<REJECT>This doesn't work for me. Let's try another allocation.</REJECT>
<PROPOSAL>{
"Alice": ["Prepare for your upcoming Software Engineer opportunity by applying for the job, booking a flight
from San Francisco to New York on July 30, 2023, and adding a note to research resources and prepare for the
interview."],

"Bob": ["Apply for the Software Developer job, set an alarm for 10:00 AM to start preparing for the interview, and
make a note to remember to research resources and get ready."]
}
</PROPOSAL>

Targeted Feedback

X Overlap detected:

«'Apply for the Software Developer job, set an alarm for 10:00 AM to start preparing for the interview, and make
a note to remember to research resources and get ready.' (mask=100011)

«'Prepare for your upcoming Software Engineer opportunity by applying for the job, booking a flight from San
Francisco to New York on July 30, 2023, and adding a note to research resources and prepare for the interview."
(mask=111000)

share atomic task(s): ['Create a note saying: “Remember to prepare for the interview and research resources.”]

Figure 9: Example of an invalid proposal (Overlap) and the
targeted feedback returned to the proposer.

C.1 Invalid proposal patterns

As summarized in Table 2, we report invalid—proposal
counts across models and settings. For o4-mini under the
utility-aware setting in the cooperative scenario, four cat-
egories appear in equal numbers: Missing <PROPOSAL>
tag (4), Missing atomic task(s) (4), Unknown task(s) (4),
and Overlap detected (4). In the competitive scenario, Miss-
ing atomic task(s) dominates (12), followed by Unknown
task(s) (5), Missing <PROPOSAL> tag (3), Overlap detected
(3), and Missing </PROPOSAL> tag (1). (Counts are totals
across the 10 runs per condition.) Because the utility-aware
setting validates every turn whereas the baseline performs
only a final check, direct pattern-level comparison between
the two strategies is not very informative; we therefore con-
centrate on the utility-aware setting.

A similar shift holds for GPT-4.1-mini: the share of
Missing atomic task(s) increases markedly from cooperative
to competitive, while other categories remain comparatively
stable. Concretely, the Missing atomic task(s) share rises
from 4/42 = 9.52% to 12/52 = 23.08% for o4-mini,
and from 4/81 = 4.94% to 17/106 = 16.04% for
GPT-4.1-mini; other categories (e.g., Unknown task(s),
Overlap, Missing <PROPOSAL> tag) change little by com-
parison.

C.2 Pareto proximity

We report the mean distance from the Pareto front over
valid runs. Closer final utility vectors indicate more Pareto-
efficient outcomes. In the cooperative setting, the baseline
is closer on average (0.21) than the utility-aware strategy
(0.27), though both improve on the initial distance (0.32).
In the competitive setting, the utility-aware strategy is closer
(0.022) than the baseline (0.028), which matches the initial
distance (0.028). Taken together, the utility-aware approach
improves Pareto proximity in the competitive setting but not
in the cooperative setting.

C.3 Turns to termination

Considering only valid runs, with o4-mini the utility-
aware strategy resolves negotiations in fewer turns than the
baseline in both scenarios: 3.00 vs. 4.83 in the cooperative
case and 3.22 vs. 6.80 in the competitive case. Under the

utility-aware strategy, agents compromise more readily, and
negotiations converge faster.



Table 2: Invalid—proposal patterns only. Columns use abbreviations: UNK = Unknown task(s), MAT = Missing atomic task(s),
OVL = Overlap detected, MPT = Missing <PROPOSAL> tag, MET = Missing </PROPOSAL> tag, MDA = Multiple descrip-
tions per agent, EMP = Empty agent. Each numeric cell shows count and, in parentheses, the percentage of proposal attempts
for that condition. “Attempts” is the total number of proposal attempts (turns + invalid proposals). A dash (—) indicates at-
tempts were not logged, so percentages are omitted.

(a) Utility-aware strategy (UAS)

Model Scen. Attempts UNK MAT OVL MPT MET MDA EMP
o4-mini Coop. 42 4(9.52%) 4(9.52%) 4(9.52%) 4(9.52%) 0(0.00%) 0 (0.00%) 0 (0.00%)
Comp. 52 5(9.62%) 12 (23.08%) 3(5.77%) 3(5.77%) 1(1.92%) 0(0.00%) 0 (0.00%)
GPT-4.1-mini Coop. 81 29 (35.80%) 4 (4.94%) 23 (28.40%) 0(0.00%) 0(0.00%) 0(0.00%) 0 (0.00%)
Comp. 106 38 (35.85%) 17 (16.04%) 23 (21.70%) 3(2.83%) 0(0.00%) 2(1.89%) 0 (0.00%)
GPT-4.1-nano Coop. 54 43 (79.63%) 1 (1.85%) 0(0.00%) 6(11.11%) 0(0.00%) 0 (0.00%) 0 (0.00%)
Comp. 42 29 (69.05%) 1(2.38%) 2 (4.76%) 11(26.19%) 7(16.67%) 0 (0.00%) 0 (0.00%)
(b) Baseline
Model Scen.  Attempts UNK MAT OVL MPT MET MDA EMP
o4-mini Coop. 49 0(0.00%) 3 (6.12%) 1(2.04%) 0(0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Comp. — 2(—) 3(—) 0(—) 0(—) 0(—) 0(—) 0(—)
GPT-4.1-mini Coop. — 3(—) 0(—) 0(—) 0(—) 0(—) 0(—) 0(—)
Comp. — 0(—) 0(—) 0(—) 0(—) 0(—) 0(—) 0(—)
GPT-4.1-nano Coop. — 5(—) 0(—) 0(—) 0(—) 0(—) 0(—) 0(—)

Comp. — 4(—) 0(—) 0(—) 0(—) 0(—) 0(—) 0(=)




